Solving a complex equation with roots of unity

Clouded
Messages
2
Reaction score
0

Homework Statement



z is a complex number.

Find all the solutions of

(z+1)^5 = z^5

The Attempt at a Solution



Of course one could expand (z+1)^5, but I remeber our professor solving this with roots of unity. Can anyone help?
 
Physics news on Phys.org
Ah, embarissing.

1=(z+1)^5/z^5
=((z+1)/z)^5

and then just using the roots of unity to find z= 1/(1-w) , w=exp(i*2k*pi/5), k=1,2,3,4.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top