benf.stokes
- 67
- 0
Homework Statement
A point particle of mass m placed on top of a semi-sphere of radius R and mass M, which is based on a frictionless surface. At one instant, the particles begin to slide over the semi-sphere.
Obtain an equation for the angle at the point where the particle loses contact with the semi-sphere.
How do M and m get into the picture?
Thanks
Homework Equations
m\cdot g\cdot \cos(\theta) - N = m\cdot \frac{v^2}{R}
m\cdot g\cdot R+0= \frac{1}{2}\cdot m\cdot v^2+m\cdot g\cdot R\cdot \cos(\varphi)
The Attempt at a Solution
<br /> \mbox{Using conservation of mechanical energy comes:}<br />
<br /> m\cdot g\cdot R+0= \frac{1}{2}\cdot m\cdot v^2+m\cdot g\cdot R\cdot \cos(\varphi)
<br /> \mbox{Solving for v^2 gives:}<br />
<br /> v^2 = 2\cdot g\cdot R\cdot (1-\cos(\varphi))<br />
<br /> \mbox{Using the centripetal force condition yields:}<br />
<br /> m\cdot g\cdot \cos(\theta) - N = m\cdot \frac{v^2}{R}<br />
<br /> \mbox{When contact is lost N = 0:}<br />
<br /> v^2 = g\cdot R\cdot \cos(\theta) \hspace{1 pt} \mbox{being \theta \hspace{0.5 pc} \mbox{the angle at which contact is lost and so:}}<br />
<br /> 2\cdot g\cdot R\cdot (1-\cos(\theta)) = g\cdot R\cdot \cos(\theta) \hspace{0.5 pc} \mbox{which upon solving gives:}<br />
<br /> \theta=\cos^{-1}(\frac{2}{3})<br />
<br /> \mbox{But I don't know where do M and m figure in this solution.}<br />
Last edited: