Solving a System of Equations: Step-by-Step Guide

squenshl
Messages
468
Reaction score
4

Homework Statement


Consider the following system of equations
da/dt = -kab, db/dt = kab, a(0) = a0, b(0) = b0.

Solve these equations exactly.


Homework Equations





The Attempt at a Solution


I added them together to get d(a+b)/dt = 0 which implies a + b = a0 + b0.
Therefore a = a0 + b0 - b so eliminating a we get db/dt = k(a0 + b0 - b)b which is separable, but I don't know where to go from here.

Someone please help.
 
Physics news on Phys.org
squenshl said:

Homework Statement


Consider the following system of equations
da/dt = -kab, db/dt = kab, a(0) = a0, b(0) = b0.

Solve these equations exactly.


Homework Equations





The Attempt at a Solution


I added them together to get d(a+b)/dt = 0 which implies a + b = a0 + b0.
Therefore a = a0 + b0 - b so eliminating a we get db/dt = k(a0 + b0 - b)b which is separable, but I don't know where to go from here.

Someone please help.
So db/(a0 + b0 - b)b = k
\frac{db}{b(a_0 + b_0 - b)} = k\cdot dt

The left side can be integrated by using partial fraction decomposition. You could simplify the work slightly by rewriting a0 + b0 as, say, M.
 
Thanks.

I let M = a0 + b0 and got 1/(b(M-b)) = 1/(Mb) + 1/(M(M-b))
and this integrates to (ln(b)-ln(M-b))/M,
therefore we get (ln(b)-ln(M-b))/M = kt + c, so ln(b/(M-b)) = M(kt+c), so b/(M-b) = exp(M(kt+c) but what do I do now.
 
Then b = (M - b)exp(M(kt + c))
==> b - bexp(M(kt + c)) = Mexp(M(kt + c))
==> b(1 - exp(M(kt + c))) = Mexp(M(kt + c))
==> b = ?

You should be able to get rid of the constant c, since you are given that b(0) = b0.

Finally, since a and b add up to a constant, you can solve for a.

When you get a, by all means, check your work. Check that a(0) and b(0) turn out as expected, and then check that a'(t) = -kab, and that b'(t) = -a'(t).
 
We get b = Mexp(M(kt+c))/(1-exp(M(kt+c))
so b(0) = b0 = Mexp(Mc)/(1-exp(Mc)), but how do we find c?
 
squenshl said:
We get b = Mexp(M(kt+c))/(1-exp(M(kt+c))
so b(0) = b0 = Mexp(Mc)/(1-exp(Mc)), but how do we find c?

b0(1 - exp(Mc)) = Mexp(Mc)
==> b0 - b0exp(Mc) = Mexp(Mc)
==> b0 = b0exp(Mc) + Mexp(Mc) = exp(Mc)(b0 +M)
==> b0/(b0 +M) = exp(Mc)

Now take the ln of both sides.
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top