plasmoid
- 14
- 0
I have a vector equation:
\vec{A} \times \vec{B} = \vec{C}. \vec{A} and \vec{C} are known, and \vec{B} must be determined. However, upon trying to use Cramer's rule to solve the system of three equations, I find that the determinant we need is zero. I know now that I need to choose a "gauge" to proceed, but can someone outline what comes next? Thanks.
\vec{A} \times \vec{B} = \vec{C}. \vec{A} and \vec{C} are known, and \vec{B} must be determined. However, upon trying to use Cramer's rule to solve the system of three equations, I find that the determinant we need is zero. I know now that I need to choose a "gauge" to proceed, but can someone outline what comes next? Thanks.