Telemachus
- 820
- 30
Homework Statement
The statement says: Calculate the next integrals using the adequate trigonometric substitution:
\displaystyle\int_{}^{}x^2\sqrt[ ]{x^2+3}dx
Homework Equations
ch^2(t)-sh^2(t)=1\Rightarrow{ch(t)=\sqrt[ ]{1+sh^2(t)}}
The Attempt at a Solution
x=\sqrt[ ]{3}sh(t)
dx=\sqrt[ ]{3}ch(t)dt
u=ch(t)
du=sh(t)dt
dv=ch(t)dt
v=sh(t)
\displaystyle\int_{}^{}ch^2(t)dt=ch(t)sh(t)-\displaystyle\int_{}^{}sh(t)sh(t)dt
\displaystyle\int_{}^{}ch^2(t)dt=ch(t)sh(t)-\displaystyle\int_{}^{}sh^2(t)dt=ch(t)sh(t)-\displaystyle\int_{}^{}(ch^2(t)-1)dt
* \displaystyle\int_{}^{}ch^2(t)dt=\displaystyle\frac{1}{2}(ch(t)sh(t)+t)
9\displaystyle\int_{}^{}sh^2(t)ch^2(t)dt=9(\displaystyle\frac{sh^2(t)}{2}ch(t)sh(t)+t)-\displaystyle\int_{}^{}(ch(t)sh(t)+t)sh(t)ch(t)dt=9(\displaystyle\frac{sh^2(t)}{2}ch(t)sh(t)+t)-\displaystyle\int_{}^{}ch(t)^2sh(t)^2dt-\displaystyle\int_{}^{}ch(t)sh(t)tdt
Well, if you see an easier way of solving this let me know :P
Bye there!
Last edited: