Solving an Integral with 17sin^3(cos^5)d(theta) Using Trigonometric Substitution

  • Thread starter Thread starter tangibleLime
  • Start date Start date
  • Tags Tags
    Integral
tangibleLime
Messages
71
Reaction score
0

Homework Statement



\int 17sin^3(\theta)cos^5(\theta)d\theta

Homework Equations


The Attempt at a Solution



\int 17sin^3(\theta)cos^5(\theta)d\theta

Pulling out constant, breaking up the sin^3.
17 \int sin^2(\theta)cos^5(\theta)sin(\theta)d\theta

Using the trig identity to replace the sin^2
17 \int (1-cos^2(\theta))cos^5(\theta)sin(\theta)d\theta

Using u-subs to get rid of the other sin.
u = cos(\theta), du = sin(\theta)d\theta
17 \int (1-u^2)u^5 du

17 \int u^5-u^7 du

17[\frac{u^6}{6}-\frac{u^8}{8}]

Subbing back in for u.
17[\frac{cos^6\theta}{6}-\frac{cos^8\theta}{8}]

Homework software says incorrect. Any hints would be great!
 
Physics news on Phys.org
du = -sinx not sinx :-)
 
Cripes, thanks. 0_0
 
np :-)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top