I Solving an ODE with Legendre Polynomials

CrosisBH
Messages
27
Reaction score
4
TL;DR Summary
Sol
From Griffiths E&M 4th edition. He went over solving a PDE using separation of variables. It got to this ODE
\frac{d}{d\theta}\left(\sin\theta\frac{d\Theta}{d\theta}\right)= -l(l+1)\sin \theta \Theta
Griffths states that this ODE has the solution
\Theta = P_l(\cos\theta)
Where $$P_l = \frac{1}{2^l !} \frac{d^l}{dx^l} (x^2 - 1)^l $$ is a Legendre Polynomial. I was curious to see how this generalizes. I found the definition of the Legendre's Polynomials is
[source]

I have trouble seeing how this is the form of the ODE above. I've tried playing with it but I can't get it into the form where it makes sense that the Legendre Polynomials are the solution. I'm also curious of more examples of ODEs that can be manipulated into this form. Thank you!
 
  • Like
Likes Delta2
Physics news on Phys.org
Begin by deviding both side of
$$\frac{d}{d\theta}\bigg(\sin\theta\frac{d\Theta}{d\theta}\bigg) = - l(l+1)\sin\theta\,\Theta$$
by ##\sin\theta## to get
$$\frac{1}{\sin\theta}\frac{d}{d\theta}\bigg(\sin\theta\frac{d\Theta}{d\theta}\bigg) + l(l+1)\Theta = 0.$$
Now, introduce the new variable ##x=-\cos\theta## and thus
$$\frac{d}{d\theta} = \sin\theta\frac{d}{dx}.$$
Therefore
$$\frac{d}{dx}\bigg(\sin^2\theta\frac{d\Theta}{dx}\bigg) + l(l+1)\Theta = 0.$$
Lastly, notice that ##x^2 = \cos^2\theta## together with the trigonometric identity ##\sin^2\theta = 1-\cos^2\theta##. Thus,
$$\frac{d}{dx}\bigg((1-x^2)\frac{d\Theta}{dx}\bigg) + l(l+1)\Theta = 0$$
which exactly is Legendre's differential equation.
 
  • Like
Likes CrosisBH
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...
Back
Top