Solving Arclength of Curve r(t) | Step-by-Step Guide

  • Thread starter Thread starter olivia333
  • Start date Start date
  • Tags Tags
    Integration
olivia333
Messages
12
Reaction score
0

Homework Statement


I have the problem and answer, I'm just confused on the last step, but I'll put down everything anyways.

Find the arclength of the curve r(t) = <5√(2)t, e5t, e-5t>
0≤t≤1

Homework Equations



L = ∫|r'(t)|

The Attempt at a Solution



r'(t) = √((5√(2))2+(5e5t)2+(-5e-5t)2)

|r'(t)| = 5√(2+e10t+e-10t)

Now this is where I get confused.

∫(5√(2+e10t+e-10t)) = ((e10t-1)*√(2+e10t+e-10t))/(e10t+1)

I just don't understand how to integrate my answer to get that. If someone could just go through the steps that'd be great. Thanks!

Then obviously sub in for 1 and 0, getting 148.4064 which is correct so I know that the integration is correctly done.
 
Last edited:
Physics news on Phys.org
That's an odd form for the resulting integral. To see how to do it more easily what is (e^(5t)+e^(-5t))^2? Expand it out.
 
olivia333 said:

Homework Statement


I have the problem and answer, I'm just confused on the last step, but I'll put down everything anyways.

Find the arclength of the curve r(t) = <5√(2)t, e5t, e-5t>
0≤t≤1

Homework Equations



L = ∫|r'(t)|

The Attempt at a Solution



r'(t) = √((5√(2))2+(5e5t)2+(-5e-5t)2)

|r'(t)| = 5√(2+e10t+e-10t)

Now this is where I get confused.

∫(5√(2+e10t+e-10t)) = ((e10t-1)*√(2+e10t+e-10t))/(e10t+1)

I just don't understand how to integrate my answer to get that. If someone could just go through the steps that'd be great. Thanks!

Then obviously sub in for 1 and 0, getting 148.4064 which is correct so I know that the integration is correctly done.

Your function 5\sqrt{2 + e^{10t} + e^{-10t}} can be re-written, using the identity \cosh(10t) =2 \cosh(5t)^2 - 1, to give a much simpler integral.

RGV
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top