Solving Bizarre Integral: x/[z2(x2+z2)1/2]

  • Thread starter Thread starter Bigfoots mum
  • Start date Start date
  • Tags Tags
    Integral
Bigfoots mum
Messages
12
Reaction score
0
Now then, I am close to shedding a tear with this one.

This integral has been popping up in a few electromag examples iv been doing and i have absolutely no idea what's going on here.

The integral is 1/[(x2+z2)3/2] with respect to x

According to the textbook the answer is x/[z2(x2+z2)1/2]

I initially, without evening really thinking, went straight for -1/(x[x2+z2]1/2)

Any ideas?
Thanks
 
Physics news on Phys.org
Use the substitution x=z \tan u.
 
btw, you left a constant
 
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...

Similar threads

Back
Top