Solving (cot x) ^ sin2x at the Limit of x→0

  • Thread starter Thread starter teng125
  • Start date Start date
  • Tags Tags
    Limit
teng125
Messages
416
Reaction score
0
anybody knows how to solve this using L'hospital rule pls
(cot x) ^ sin2x with limi X to zero
 
Physics news on Phys.org
You can write:

f\left( x \right)^{g\left( x \right)} = e^{\ln \left( {f\left( x \right)^{g\left( x \right)} } \right)} = e^{g\left( x \right)\ln \left( {f\left( x \right)} \right)}

So:

\mathop {\lim }\limits_{x \to 0} f\left( x \right)^{g\left( x \right)} = e^{\mathop {\lim }\limits_{x \to 0} \left( {g\left( x \right)\ln \left( {f\left( x \right)} \right)} \right)}

Does this help you any further? Remember that for L'Hopital, you're trying to get 0/0 or ∞/∞.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top