Graduate Solving Covariant Derivative Notation Confusion

Click For Summary
The discussion centers on clarifying the notation and derivation related to covariant derivatives and vector fields. The confusion arises from the notation shift of the index ##\alpha## and the expression for the covariant derivative of the basis vector fields. It is noted that the article's notation is imprecise, as the index should remain lower, indicating that terms should not have free indices. The derivation of the covariant derivative involves recognizing that the connection coefficients, represented by ##\Gamma##, relate the change in the basis vectors to the vector field being differentiated. Ultimately, the conversation highlights the importance of precise notation in tensor calculus to avoid misunderstandings in the derivation of geometric properties.
Markus Kahn
Messages
110
Reaction score
14
TL;DR
I'm having a hard time relating two things that should be the same, but don't appear to be the same...
I've stumbled over this article and while reading it I saw the following statement (##\xi## a vectorfield and ##d/d\tau## presumably a covariant derivative***):
$$\begin{align*}\frac{d \xi}{d \tau}&=\frac{d}{d \tau}\left(\xi^{\alpha} \mathbf{e}_{\alpha}\right)=\frac{d \xi^{\alpha}}{d \tau} \mathbf{e}_{\alpha}+\xi^{\alpha} \frac{d \mathbf{e}^{\alpha}}{d \tau} \\& =\frac{d \xi^{\alpha}}{d \tau} \mathbf{e}_{\alpha}+\xi^{\alpha} \frac{d x^{\mu}}{d \tau} \frac{\partial \mathbf{e}^{\alpha}}{\partial x^{\mu}} \\& =\frac{d \xi^{\alpha}}{d \tau} \mathbf{e}_{\alpha}+ \xi^{\sigma} u^{\mu} \Gamma_{\mu \sigma}^{\alpha} \mathbf{e}_{\alpha}.\end{align*}$$

Question:
This gives me some headaches... especially the
$$\frac{d \mathbf{e}^{\alpha}}{d \tau}$$
part. First of all, why does ##\alpha## gets shifted up? I don't see any metric or the like to compensate for that... Second, how exactly does one come to
$$ \frac{d \mathbf{e}^{\alpha}}{d \tau} =\frac{d x^{\mu}}{d \tau} \frac{\partial \mathbf{e}^{\alpha}}{\partial x^{\mu}}= u^{\mu} \Gamma_{\mu \sigma}^{\alpha} \mathbf{e}_{\alpha}.$$
(just to make it clear, I don't mean using the chain rule, this much would be obvious, see below for a clearer explanation...)

I know that for any function ##f## and vector field ##X## we have ##\nabla_{X}f = Xf## so in particular ##\nabla_{\frac{\partial}{\partial x^\mu}}f = \frac{\partial}{\partial x^\mu}f##. I therefore just assumed that ##\frac{d}{d\tau} \mathbf{e}_\alpha = \nabla_{\frac{d}{d\tau}} \mathbf{e}_\alpha##. Now if ##\mathbf{e}_\alpha## is a function of ##x##, which is parametrized over ##\tau## , then how can you show that
$$\nabla_{\frac{d}{d\tau}} \mathbf{e}_\alpha(x(\tau)) = u^{\mu} \Gamma_{\mu \sigma}^{\alpha} \mathbf{e}_{\alpha}$$

---------------------
*** I'm pretty sure it is b.c. we are trying to prove that
$$\frac{D^{2}}{D \tau^{2}} \delta x^{\mu}=R_{\nu \sigma \rho}^{\mu} \frac{d x^{\nu}}{d \tau} \frac{d x^{\sigma}}{d \tau} \delta x^{\rho}$$
and apparently
$$\frac{\partial \mathbf{e}^{\alpha}}{\partial x^{\mu}}= \Gamma_{\mu \sigma}^{\alpha} \mathbf{e}_{\alpha}.$$
 
Physics news on Phys.org
Markus Kahn said:
why does ##\alpha## gets shifted up?

Because the article is being sloppy with notation. It should be down, since each term should have no free indexes.
 
  • Like
Likes vanhees71
For the second part of the question, for some vector ##\mathbf Y##, if we define ##\nabla \mathbf Y## to be the (1,1) tensor that gives ##\nabla_{\mathbf X} \mathbf Y## when contracted with the vector ##\mathbf X##, then from the definition ##\Gamma^a_{bc} = \left < \mathbf e^a, \mathbf \nabla_{\mathbf e_b} \mathbf e_c \right >##, we can write ##\nabla \mathbf e_c =\Gamma^a_{bc} \mathbf e^b \otimes \mathbf e_a##. Contracting with ##\mathbf X = \frac{d}{d\tau} = X^a \mathbf e_a## we get ##\nabla_{\mathbf X} \mathbf e_c =\Gamma^a_{bc} X^b \mathbf e_a##. Then ##\xi^c \nabla_{\mathbf X} \mathbf e_c = \xi^c \Gamma^a_{bc} X^b \mathbf e_a##, and since ##X^b = \frac{dx^b}{d\tau} = u^b## this is the expression you originally have when you account for the mistakenly shifted up ##\alpha##.
 
In an inertial frame of reference (IFR), there are two fixed points, A and B, which share an entangled state $$ \frac{1}{\sqrt{2}}(|0>_A|1>_B+|1>_A|0>_B) $$ At point A, a measurement is made. The state then collapses to $$ |a>_A|b>_B, \{a,b\}=\{0,1\} $$ We assume that A has the state ##|a>_A## and B has ##|b>_B## simultaneously, i.e., when their synchronized clocks both read time T However, in other inertial frames, due to the relativity of simultaneity, the moment when B has ##|b>_B##...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
614
  • · Replies 16 ·
Replies
16
Views
2K
  • · Replies 9 ·
Replies
9
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
Replies
22
Views
4K
  • · Replies 11 ·
Replies
11
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K