Solving Differential Equation: Find y for dy/dx = (x-y+2)/(x-y+3)

Dell
Messages
555
Reaction score
0
find y if

dy/dx=\frac{x-y+2}{x-y+3}

what i tried to do was
u=\frac{x-y+2}{x-y+3}ux-uy+3u=x-y+2

y(1-u)=x+2-u(3+x)

y=\frac{x+2-u(3+x)}{(1-u)}y'=\frac{(1-u'(3+x)-u)(1-u)+u'(x+2-u(3+x))}{1-2u+u^2}

\frac{(1-u'(3+x)-u)(1-u)+u'(x+2-u(3+x))}{1-2u+u^2}=u

(1-u'(3+x)-u)(1-u)+u'(x+2-u(3+x))=u-2u^2+u^3

from here try get u's one side anx x's the other
surely this isn't the way to do this ??
 
Physics news on Phys.org
Try u=x-y.
 
perfect thanks
 
what would i do in a problem where the numerator and denominator have different x and y'sfor example

y'=(3x-y-9)/(x+y+1)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top