Dell
- 555
- 0
find y if
dy/dx=\frac{x-y+2}{x-y+3}
what i tried to do was
u=\frac{x-y+2}{x-y+3}ux-uy+3u=x-y+2
y(1-u)=x+2-u(3+x)
y=\frac{x+2-u(3+x)}{(1-u)}y'=\frac{(1-u'(3+x)-u)(1-u)+u'(x+2-u(3+x))}{1-2u+u^2}
\frac{(1-u'(3+x)-u)(1-u)+u'(x+2-u(3+x))}{1-2u+u^2}=u
(1-u'(3+x)-u)(1-u)+u'(x+2-u(3+x))=u-2u^2+u^3
from here try get u's one side anx x's the other
surely this isn't the way to do this ??
dy/dx=\frac{x-y+2}{x-y+3}
what i tried to do was
u=\frac{x-y+2}{x-y+3}ux-uy+3u=x-y+2
y(1-u)=x+2-u(3+x)
y=\frac{x+2-u(3+x)}{(1-u)}y'=\frac{(1-u'(3+x)-u)(1-u)+u'(x+2-u(3+x))}{1-2u+u^2}
\frac{(1-u'(3+x)-u)(1-u)+u'(x+2-u(3+x))}{1-2u+u^2}=u
(1-u'(3+x)-u)(1-u)+u'(x+2-u(3+x))=u-2u^2+u^3
from here try get u's one side anx x's the other
surely this isn't the way to do this ??