Solving Difficult Integrals with WolframAlpha

  • Thread starter Thread starter Ry122
  • Start date Start date
  • Tags Tags
    Integral
Ry122
Messages
563
Reaction score
2
How did wolframalpha get this solution?

Is it necessary to use the quotient rule and the product rule together?
If so, in which order do i apply them?

http://www.wolframalpha.com/input/?i=integral+1%2F%28x*sqrt%281-x^2%29%29
 
Physics news on Phys.org
Ry122 said:
How did wolframalpha get this solution?

Is it necessary to use the quotient rule and the product rule together?
If so, in which order do i apply them?

http://www.wolframalpha.com/input/?i=integral+1%2F%28x*sqrt%281-x^2%29%29
If you notice, there is a show steps link on the right hand side, just below the entry text box.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...

Similar threads

Back
Top