Solving Eclipsing Binary Homework

  • Thread starter Thread starter shadowpipi
  • Start date Start date
  • Tags Tags
    Binary Magnitudes
AI Thread Summary
The discussion focuses on solving a homework problem involving two main sequence stars with given apparent magnitudes and radii. The first part requires calculating the apparent brightness of the binary system during an eclipse and determining the necessary radius for star #1 to equalize the depths of the primary and secondary eclipses. The second part involves calculating the B-V colors for both stars, with the participant successfully calculating the temperature of star #1 using Wien's law but seeking guidance on calculating the B-V color for star #2. Suggestions include using the known radius and distance to find effective wavelength relations for star #2. The conversation emphasizes the importance of understanding the relationships between apparent magnitude, brightness, and color indices in binary star systems.
shadowpipi
Messages
1
Reaction score
0

Homework Statement


Two main sequence stars have the following properties:
#1: apparent magnitude m_v=2.5, λ_eff = 551nm radius r=1.6R_sun
#2: m_v = 5.77, r = 1.25R_sun

1) Calculate the apparent brightness of the system when #2 is in front of #1. Assuming that #1 has constant apparent brightness, what radius is required for #1 to make the depth of the primary eclipse equal to that of the secondary eclipse (the properties of #2 don't change).

2)Further: B-V colors of the two stars have to be calculated

Homework Equations


a) m_v1 - m_v2 = -2.5*log(F_1/F_2)
b) λ_max = 2898/T
c) B-V= m_b - m_v =-0.865+(8540/T)

The Attempt at a Solution


1)I already calculated the apparent brightness of the binary system, when there is no eclipse, using eq. a and the relation of fluxes (m_system=m_2+2.5*log(F_2/F_system).

2)for #1 I did the following:
using Wien's displacement law (eq. b) I calculated T (not sure if I can use the effective wavelength as max wavelength), and then calculated B-V using eq. c. From that I calculated m_b. But how to calculate B-V of #2 with only m_v given?Thanks for any suggestions!
 
Physics news on Phys.org
shadowpipi said:
1)I already calculated the apparent brightness of the binary system, when there is no eclipse, using eq. a and the relation of fluxes (m_system=m_2+2.5*log(F_2/F_system).
That's not what the question is asking.
shadowpipi said:
But how to calculate B-V of #2 with only m_v given?
You also know the radius, and the star is at the same distance as the other star. You can find some relations to calculate λeff.
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top