- 3,372
- 465
Homework Statement
From the 2nd TD law:
TdS= d(\rho V) + P dV - \mu d(nV)
find that:
S= \frac{V}{T} (\rho+P- \mu n)
Homework Equations
\frac{dP}{dT}= \frac{P+\rho - \mu n}{T}
The Attempt at a Solution
TdS= d(\rho V) + P dV - \mu d(nV)
TdS= d[(\rho+ P- \mu n) V] - V dP + nV d \mu
or I can write:
dS=\frac{1}{T} d[(\rho+ P- \mu n) V] - \frac{V}{T} dP + \frac{nV}{T} d \mu
Now I write that (using the given formula):
dP= \frac{P+\rho - \mu n}{T} dT
dS=\frac{1}{T} d[(\rho+ P- \mu n) V] - V (P+\rho - \mu n) \frac{dT}{T^{2}} + \frac{nV}{T} d \mu
My problem is that this result gives the correct formula I'm looking for the entropy, except for the last \frac{nV}{T} d \mu
For the last I tried to take:
\frac{dS}{dT}= \frac{dS}{d \mu} \frac{d \mu}{dT}= \frac{nV}{T} \frac{d \mu}{dT}
\frac{d^{2}S}{d(nV)dT}= \frac{1}{T} \frac{d \mu}{dT}
Also:
\frac{dS}{d(nV)}= -\frac{ \mu }{T}
\frac{d^{2}S}{dT d(nV)}= \frac{ \mu }{T^{2}}
So that I have:
\frac{1}{T} \frac{d \mu}{dT} =\frac{ \mu }{T^{2}}
That means:
d \mu = \frac{ \mu }{T} dT
Inserting in the expression for the entropy at last:
dS=\frac{1}{T} d[(\rho+ P- \mu n) V] - V (P+\rho - \mu n) \frac{dT}{T^{2}} + (nV \mu) \frac{dT}{T^{2}}
Which can't be written as:
dS= d[(\rho+ P- \mu n) \frac{V}{T}]
due to the last term...
Any help?