thepopasmurf
- 73
- 0
Homework Statement
Show that the solutions of the equation
2sin(z) + cos(z) = isin(z)
are given by
z = (n\pi-\frac{\pi}{8}) - \frac{1}{4}iln2
Homework Equations
e^{iz} = cos(z) + isin(z)
sinz = \frac{1}{2i}(e^{z}-e^{-z})
z_{1}^{z_{2}} = e^{z_{2}lnz_{1}}
lnz = lnr + i(\theta + 2n\pi)
The Attempt at a Solution
2sinz + cosz = isinz
cosz - isinz = -2sinz
e^{-iz} = -\frac{1}{i}(e^z-e^{-z})
e^{-iz} = i(e^z-e^{-z})
e^{-iz} = e^{i\pi/2}(e^z-e^{-z})
e^{-iz} = e^{i\pi/2+z}-e^{i\pi/2-z}
lne^{-iz + 2n\pi} = ln( e^{i\pi/2+z-i\pi/2+z})
2z = -iz + 2ni\pi
(2+i)z = 2ni\pi
z = \frac{2ni\pi}{2+i} = 2ni\pi\frac{2-i}{5} = \frac{4ni\pi}{5} + \frac{2n\pi}{5}
Don't know where to go from here