Solving for current between 2 nodes

  • Thread starter Thread starter grekin
  • Start date Start date
  • Tags Tags
    Current Nodes
AI Thread Summary
The discussion focuses on calculating the current between nodes B and D using the superposition principle, given specific values for current, voltage, and resistance. The initial attempts involved mesh and nodal analysis to derive currents and voltages, but the results were inconsistent with expected outcomes. A suggestion was made to simplify the circuit by treating the current source as an open circuit and the voltage source as a short circuit, which could streamline calculations. Despite following this advice, the user continued to encounter discrepancies in their results, prompting further examination of calculations and potential rounding errors. The conversation emphasizes the importance of careful analysis and verification in circuit calculations.
grekin
Messages
18
Reaction score
0

Homework Statement



Assume that I = 22mA , V = 6.0V , and R = 350Ω. Determine the current between B and D using the superposition principle.

Steif.ch03.p33.jpg


Homework Equations



V=IR
Superposition Principle
G=1/R
Voltage and Current dividers
WRqRWd9.png


The Attempt at a Solution



I think I'm understanding the superposition just fine, but having issues when actually solving for the current.

I_BD = I_BD' + I_BD''

Replacing the current source with an open circuit, I used mesh analysis to find I_BD'. With the current source removed, there were 2 meshes left in the circuit:

Mesh 1 (on the left):

400*i_1 - 300*i_2 = 6

Mesh 2 (on the right):

1050*i_2 - 300*i_1 = 0

i_1 = 0.019, i_2 = 0.0055

Using the voltage divider principle, v=6*(100/1050)=0.57.

V=IR, I_BD'=V/R=0.57/100=0.0057

Now removing the voltage source and replacing it with a short circuit, I used nodal analysis to solve for the voltages at each node, then used (v_d-v_b)/100 = I_BD''. The node between node A and node C will be addressed as node E.

Node A:

(1/100+1/350+1/300)*v_A - (1/100+1/300)*v_B - v_E/350 = 0

Node B:

-(1/100+1/350)*v_A + (1/100+1/300+1/100)*v_B - v_D/100 = 0

Node C:

(1/200+1/100)*v_C - v_D/100 - v_3/200 = 0

Node D:

-v_B/100 - v_C/100 + (1/100+1/100)*v_D = -0.022

Node E:

-v_A/350 - v_C/200 + (1/350+1/200)*v_E = 0.022

Solving, I got: v_A=0, v_B=-0.6, v_C=0, v_D=-1.4, v_E=28.I_BD'' = (v_d-v_b)/100 = -0.008

I_BD = 0.0057 - 0.008 = -0.23 (incorrect)
 
Physics news on Phys.org
I do seriously hate to answer your question with a question and no help directly to what you asked. It seems to me that a more straight-forward approach to this problem (and one that you may or may not have considered) would be to simplify the drawing with the current source opened. With the current source opened, the resistors from A to D to C to B could be added to give one series resistance, the current through which is the current through the resistor you are interested in due to the voltage source. Which would be easy to find by simplifying that circuit to find the total resistance and current, then applying ohms law to find the current.

You could next short the voltage source and simplify that circuit by combining the 100 ohm and 300 ohm resistors in parallel where a simple current divider would give you the current through the resistor due to the current source. It would be less work.

What do you think of this approach to the problem, does what I said make sense? or does mesh and nodal feel more 'comfortable' to you after reading this? Is there any part I might be able to clarify if it does not make sense as well.

Thanks, again sorry for not looking through your work, I will do so if this does not make sense.
 
I understand what you're saying, and it does seem like a much simpler approach than what I had come up with. However, I'm still not getting the correct answer. I believe I solved the part where the voltage source is shorted correctly:

100*300/(100+300) = 75. Applying the current divider, I got:

I_BD'' = -0.022 * 300/825 = -0.008, which is what I got using my method.

Now when solving with the current source removed, I simplified the resistors to get an equivalent resistance of 750 Ohms. I then combined the 300 and 750 Ohm resistors in parallel, then combined that equivalent with the 100 Ohm resistor to get a total resistance of 314.3 Ohms. Solving with V=IR, I got I_total = 0.019 A. However, this is the part where I'm not entirely understanding what you're saying. I tried applying the current divider on the following circuit:

ZR1VmsJ.png


I_BD' = 0.019 * 300/1050 = 0.0054 A

Combining the two currents, I_BD = -0.0026 A which is incorrect. However, I now received the following feedback:

"Not quite. Check through your calculations; you may have made a rounding error or used the wrong number of significant figures."
 
I like what you did.. maybe not round the equivalent resistance as much? take 314.25 instead of 314.3

What you are doing is how I would do it as well so I am not sure why it is not right. Maybe someone else could weigh in
 
I multiplied the values first without the error limit. Got 19.38. rounded it off to 2 significant figures since the given data has 2 significant figures. So = 19. For error I used the above formula. It comes out about 1.48. Now my question is. Should I write the answer as 19±1.5 (rounding 1.48 to 2 significant figures) OR should I write it as 19±1. So in short, should the error have same number of significant figures as the mean value or should it have the same number of decimal places as...
Thread 'A cylinder connected to a hanging mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...

Similar threads

Back
Top