Solving for E in an Exponential Equation with Square Roots

  • Thread starter Thread starter kmoh111
  • Start date Start date
  • Tags Tags
    Exponents
kmoh111
Messages
8
Reaction score
0

Homework Statement


How do you solve this probem for E:

E + sqrt(aE) = b

where 'a' and 'b' are constants.

I don't recall how to handle the exponents where you have E + aE^1/2 = b and solve for E.
 
Physics news on Phys.org
Rewrite it as sqrt(aE)=b-E. Now square both sides. It's a quadratic equation in E.
 
Thank you.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top