- 1,753
- 143
Homework Statement
My notes are missing a step. How do I get \frac{{x^{n + 1} }}{{\sqrt {n + 1} }}\frac{{\sqrt n }}{{x^n }} = \frac{{x\sqrt n }}{{\sqrt {n + 1} }}
Homework Equations
I'm trying like this, but I don't seem to be arriving at the same step as the example:
\frac{{x^{n + 1} }}{{\sqrt {n + 1} }}\frac{{\sqrt n }}{{x^n }} = \frac{{x^{n + 1} }}{{\sqrt {n\left( {1 + \frac{1}{n}} \right)} }}\frac{{\sqrt n }}{{x^n }} = \frac{{x^{n + 1} }}{{\sqrt n \sqrt {\left( {1 + \frac{1}{n}} \right)} }}\frac{{\sqrt n }}{{x^n }} = \frac{{x^{n + 1} }}{{\sqrt {\left( {1 + \frac{1}{n}} \right)} }}\frac{1}{{x^n }}
Thanks!