Solving for $\frac{{x\sqrt n }}{{\sqrt {n + 1} }}$: A Homework Guide

  • Thread starter Thread starter tony873004
  • Start date Start date
  • Tags Tags
    Homework
tony873004
Science Advisor
Gold Member
Messages
1,753
Reaction score
143

Homework Statement


My notes are missing a step. How do I get \frac{{x^{n + 1} }}{{\sqrt {n + 1} }}\frac{{\sqrt n }}{{x^n }} = \frac{{x\sqrt n }}{{\sqrt {n + 1} }}


Homework Equations


I'm trying like this, but I don't seem to be arriving at the same step as the example:
\frac{{x^{n + 1} }}{{\sqrt {n + 1} }}\frac{{\sqrt n }}{{x^n }} = \frac{{x^{n + 1} }}{{\sqrt {n\left( {1 + \frac{1}{n}} \right)} }}\frac{{\sqrt n }}{{x^n }} = \frac{{x^{n + 1} }}{{\sqrt n \sqrt {\left( {1 + \frac{1}{n}} \right)} }}\frac{{\sqrt n }}{{x^n }} = \frac{{x^{n + 1} }}{{\sqrt {\left( {1 + \frac{1}{n}} \right)} }}\frac{1}{{x^n }}

Thanks!
 
Physics news on Phys.org
Never mind. I figured it out. x^(n+1)/x^n = x
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top