Solving for k1 and k2 in Case Analysis of (|k1|)(|k2|)=1 without Quotation Marks

  • Thread starter Thread starter fk378
  • Start date Start date
  • Tags Tags
    Analysis
fk378
Messages
366
Reaction score
0
If (|k1|)(|k2|)=1, show k1, k2= +/- 1

I don't know how to show that abs value of k1=abs value k2=1.
 
Physics news on Phys.org
fk378 said:
I don't know how to show that abs value of k1=abs value k2=1.
You don't need to do that. You have to consider four cases: k1 = 1, k2 = 1; k1 = -1, k2 = 1; etc. For each case, you have to show that the equality holds.
 
I'm assuming k1 and k2 are integers by the way. Otherwise, the statement is false.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top