stunner5000pt
- 1,443
- 4
Consider a particle of mass m in the normal ground sate of an infinite square well potential of width a/2. Its normalized wave function at time t=0 is given by
\Psi(x,0) = \frac{2}{\sqrt{a}} \sin \frac{2 \pi x}{a} for 0 <x <a/2
0 elsewhere
At this time the well suddenly changes to an infinite square well with width a without affectring the wave function.
By writing Psi(x,t) as a linear superposition of the energy eigenfunctions of the new potentaail find the probability taht a subsequency measurement of the enrgy will yield th result
E_{1} = \frac{\hbar^2 \pi^2}{2ma^2}
{Hint: A linear superposition of square well eigenfunctions is a Fourier sine series and teh coefficients of teh series are given by simple integrals)
Now we know that
\Psi_{1}(x,0) = \sum_{n=0}^{\infty} c_{n} \psi_{n}(x)
and the wave function didnt change
from teh hint
if i find the coefficients all i do is find an approximation to teh wave function. the new potentail would be
V(x) = 0 for 0<x<a
infinity elsewhere
and we know the wave function for that potential it is
\Psi_{2}(x,0) = \sqrt{\frac{2}{a}} \sin\frac{\pi x}{a}
for the first exceited state
so am i to find Psi 1 in terms of Psi 2??
\Psi(x,0) = \frac{2}{\sqrt{a}} \sin \frac{2 \pi x}{a} for 0 <x <a/2
0 elsewhere
At this time the well suddenly changes to an infinite square well with width a without affectring the wave function.
By writing Psi(x,t) as a linear superposition of the energy eigenfunctions of the new potentaail find the probability taht a subsequency measurement of the enrgy will yield th result
E_{1} = \frac{\hbar^2 \pi^2}{2ma^2}
{Hint: A linear superposition of square well eigenfunctions is a Fourier sine series and teh coefficients of teh series are given by simple integrals)
Now we know that
\Psi_{1}(x,0) = \sum_{n=0}^{\infty} c_{n} \psi_{n}(x)
and the wave function didnt change
from teh hint
if i find the coefficients all i do is find an approximation to teh wave function. the new potentail would be
V(x) = 0 for 0<x<a
infinity elsewhere
and we know the wave function for that potential it is
\Psi_{2}(x,0) = \sqrt{\frac{2}{a}} \sin\frac{\pi x}{a}
for the first exceited state
so am i to find Psi 1 in terms of Psi 2??
Last edited: