I Solving for SHM Diatomic Energy Levels

James Brady
Messages
106
Reaction score
4
So I'm trying to figure out how we got the allowed vibrational energy levels for a diatomic molecule by approximating it with simple harmonic motion.

I do know how to use the uncertainty principle to get the zero-point energy:

We know that the potential function is ##V(x) = \frac{1}{2}mx^2## where x is the distance away from the equilibrium:

----------------------------------------------------------------------------------------------------------------------
1) Knowing that ##k \Delta X^2 = \frac{\Delta P^2}{m}##
##\Delta X = \frac{\Delta P}{\sqrt{km}}##

So that's one Delta X, the other one you can get from the uncertainty principle:​

##\Delta X \Delta P \geq \frac{\hbar}{2}## therefore ##\Delta X = \frac{\hbar}{2 \Delta P}## at a minimum

These two values for delta x and inserted back into the original energy equation:

##V(x) = \frac{1}{2}m\frac{\Delta P}{\sqrt{km}}\frac{\hbar}{2 \Delta P}##

Delta P cancel out, multiply both numerator and denominator by k squared and you get the zero point energy:

##E_0 = \frac{\hbar}{2} \omega##
----------------------------------------------------------------------------------------------------------------------------

So that's one energy level, how do I find the rest? If I start with just the Schrodinger equation:

##(-\frac{\hbar}{2m} \frac{d}{dx^2} + \frac{1}{2}kx^2)\psi(x) = E \psi(x) ##

I get that, but it's not so easy to solve, I know the answer should be: ##E = \hbar \omega(n + 1/2), n = 0,1,2...##

Also, how would I find which energy level the system is in based on temperature, the only thing I can think of right now is Botlzman ##E = \frac{3}{2}kT##, but I understand that much of this energy can be in the form of translational, rotational or oscillation, so...

 
Physics news on Phys.org
Thanks a lot, that was very helpful.
 
Not an expert in QM. AFAIK, Schrödinger's equation is quite different from the classical wave equation. The former is an equation for the dynamics of the state of a (quantum?) system, the latter is an equation for the dynamics of a (classical) degree of freedom. As a matter of fact, Schrödinger's equation is first order in time derivatives, while the classical wave equation is second order. But, AFAIK, Schrödinger's equation is a wave equation; only its interpretation makes it non-classical...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. Towards the end of the first lecture for the Qiskit Global Summer School 2025, Foundations of Quantum Mechanics, Olivia Lanes (Global Lead, Content and Education IBM) stated... Source: https://www.physicsforums.com/insights/quantum-entanglement-is-a-kinematic-fact-not-a-dynamical-effect/ by @RUTA
Is it possible, and fruitful, to use certain conceptual and technical tools from effective field theory (coarse-graining/integrating-out, power-counting, matching, RG) to think about the relationship between the fundamental (quantum) and the emergent (classical), both to account for the quasi-autonomy of the classical level and to quantify residual quantum corrections? By “emergent,” I mean the following: after integrating out fast/irrelevant quantum degrees of freedom (high-energy modes...
Back
Top