Solving for the Unique Vector h(x) in the Polynomial Space of Degree 2

  • Thread starter Thread starter torquerotates
  • Start date Start date
  • Tags Tags
    Vector
torquerotates
Messages
207
Reaction score
0

Homework Statement


For the given inner product space V=polynomial space of degree 2. Find a the unique vector h(x) such that <f,h>=int(f*h) from 0 to 1. and g(f)=f(0)+f'(1).



Homework Equations


Theorem: let V be a finite dimensional inner product space over F and let g:V->F be a linear transformation. Then there exists an unique vector, y in V such that g(x)=<x,y>



The Attempt at a Solution


well, <f,h>=g(f)

=> <f,h>=f(0)+f'(1)
=>int(f*h) from 0 to 1=f(0)+f'(1)

I have no clue how to solve this final step
 
Physics news on Phys.org
Be explicit. Let h(x)=h0+h1*x+h2*x^2, similarly for f(x). Now explicitly work out <f,g>=f(0)+f'(0). Hint: if the equation must be true for ALL f, then it must be true for say, f0=1, f1=0 and f2=0. Try some other choices for the coefficients of f, until you get enough equations to solve for the h's.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top