vmw
- 4
- 0
Consider,
f(\mathbf{w}) = \int K(\mathbf{w,\mathbf{v}}) g(\mathbf{v}) d\mathbf{v}
where \mathbf{v},\mathbf{w} \in \mathbb{R^3}.
Is it possible to solve for the integral kernel, K(\mathbf{w,\mathbf{v}}), if f(\mathbf{w}) and g(\mathbf{v}), are known scalar functions and we require \int K(\mathbf{w,\mathbf{v}}) d\mathbf{v} = 1? These are definite integrals: \int \rightarrow \int_{a1}^{b1}\int_{a2}^{b2}\int_{a3}^{b3}
Thank you for any solution/advice/insight!
f(\mathbf{w}) = \int K(\mathbf{w,\mathbf{v}}) g(\mathbf{v}) d\mathbf{v}
where \mathbf{v},\mathbf{w} \in \mathbb{R^3}.
Is it possible to solve for the integral kernel, K(\mathbf{w,\mathbf{v}}), if f(\mathbf{w}) and g(\mathbf{v}), are known scalar functions and we require \int K(\mathbf{w,\mathbf{v}}) d\mathbf{v} = 1? These are definite integrals: \int \rightarrow \int_{a1}^{b1}\int_{a2}^{b2}\int_{a3}^{b3}
Thank you for any solution/advice/insight!
Last edited: