VinnyCee
- 486
- 0
Find v_1,\,v_2,\,and\,v_3 in the circuit below using nodal analysis:
My work so far:
I\,=\,\frac{v_1}{2\Omega},\,\,I_1\,=\,\frac{v_2}{4\Omega},\,\,I_2\,=\,\frac{v_3}{3\Omega},\,\,I_3\,=\,\frac{v_1\,-\,v_3}{6\Omega}
KVL @ loop1 => -I\,(2\Omega)\,+\,10\,V\,+\,I_1(4\Omega)\,=\,0
Which equals:
-\left(\frac{v_1}{2\Omega}\right)(2\Omega)\,+\,10\,V\,+\,\left(\frac{v_2}{4\Omega}\right)(4\Omega)\,=\,0
Which equals:
-v_1\,+\,10\,V\,+\,v_2\,=\,0
KVL @ loop2 => -v_2\,-\,5\,I\,+\,v_3\,=\,0
KVL @ loop3 => -10\,V\,+\,v_1\,-\,v_3\,+\,5\,I\,=\,0
KCL @ v1 => I\,+\,I_3\,+\,I_4\,=\,0
KCL @ v2 => I_4\,=\,I_1\,+\,I_5
KCL @ v3 => I_2\,=\,I_5\,+\,I_3
KCL @ Super Node 1 => I_4\,+\,I_3\,=\,I_1\,+\,I_2
When I combine these equations to get 4 equations with 4 variables, I get the following matrix:
\left[\begin{array}{cccc|c}<br /> -1 & 1 & 0 & 0 & -10 \\<br /> 0 & -1 & 1 & -5 & 0 \\<br /> 1 & 0 & -1 & 5 & 10 \\<br /> \frac{1}{2} & \frac{1}{4} & \frac{1}{3} & 0 & 0<br /> \end{array}\right]
The columns go like this: v1, v2, v3, I, constant
But this matrix has infinite solutions! How do I solve?
My work so far:
I\,=\,\frac{v_1}{2\Omega},\,\,I_1\,=\,\frac{v_2}{4\Omega},\,\,I_2\,=\,\frac{v_3}{3\Omega},\,\,I_3\,=\,\frac{v_1\,-\,v_3}{6\Omega}
KVL @ loop1 => -I\,(2\Omega)\,+\,10\,V\,+\,I_1(4\Omega)\,=\,0
Which equals:
-\left(\frac{v_1}{2\Omega}\right)(2\Omega)\,+\,10\,V\,+\,\left(\frac{v_2}{4\Omega}\right)(4\Omega)\,=\,0
Which equals:
-v_1\,+\,10\,V\,+\,v_2\,=\,0
KVL @ loop2 => -v_2\,-\,5\,I\,+\,v_3\,=\,0
KVL @ loop3 => -10\,V\,+\,v_1\,-\,v_3\,+\,5\,I\,=\,0
KCL @ v1 => I\,+\,I_3\,+\,I_4\,=\,0
KCL @ v2 => I_4\,=\,I_1\,+\,I_5
KCL @ v3 => I_2\,=\,I_5\,+\,I_3
KCL @ Super Node 1 => I_4\,+\,I_3\,=\,I_1\,+\,I_2
When I combine these equations to get 4 equations with 4 variables, I get the following matrix:
\left[\begin{array}{cccc|c}<br /> -1 & 1 & 0 & 0 & -10 \\<br /> 0 & -1 & 1 & -5 & 0 \\<br /> 1 & 0 & -1 & 5 & 10 \\<br /> \frac{1}{2} & \frac{1}{4} & \frac{1}{3} & 0 & 0<br /> \end{array}\right]
The columns go like this: v1, v2, v3, I, constant
But this matrix has infinite solutions! How do I solve?
Last edited: