Solving for x in P(x) = √6+5x-x2

  • Thread starter Thread starter Wa1337
  • Start date Start date
Wa1337
Messages
33
Reaction score
0

Homework Statement


P(x) = √6+5x-x2


Homework Equations





The Attempt at a Solution


P(x) = √6+5x-x2

-x2+5x+6 >/= 0
x2-5x-6 </= 0
(x-6)(x+1) </= 0
 
Physics news on Phys.org
Do you mean P(x) =\sqrt{6+5x-x^2}\,?

If so, then use parentheses to make things clear.

P(x) = √(6+5x-x2).

Otherwise it looks like you have P(x) =(\sqrt{6})+5x-x^2\,?

Wa1337 said:

Homework Statement


P(x) = √6+5x-x2

Homework Equations


The Attempt at a Solution


P(x) = √6+5x-x2

-x2+5x+6 >/= 0
x2-5x-6 </= 0
(x-6)(x+1) </= 0

What you have done will allow you to find the domain of P(x).

To find the range, find the vertex of the parabola of f(x) = 6+5x-x2 . Then proceed from there.
 
In vertex form it is y=(x-2.5)2-12.25
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top