I Solving Geodesic Equations with Godel Metric

  • I
  • Thread starter Thread starter space-time
  • Start date Start date
  • Tags Tags
    Geodesic
space-time
Messages
218
Reaction score
4
I have been working with the Godel metric (- + + + signature). I wanted to derive the geodesics for the metric, so I took to the geodesic equation:

(d2xm/ds2) + Γmab(dxa/ds)(dxb/ds) = 0

In the case of the Godel metric, the geodesic equations that I was able to derive after deriving the Christoffel symbols are as follows:

(d2x0/ds2) + 2(dx0/ds)(dx1/ds) + ex(dx1/ds)(dx3/ds) = 0

(d2x1/ds2) + ex(dx0/ds)(dx3/ds) + ( e2x / 2 )(dx3/ds)(dx3/ds) = 0

(d2x2/ds2) = 0 (This one is easy to solve. It is just a straight line x2(s) = As + B where A and B are constants).

(d2x3/ds2) - (2 / ex)(dx0/ds)(dx1/ds) = 0Now can anyone either direct me to some free or cheap software that I could use to solve these equations, or give me a method that would commonly be used to solve these?

Thank you.
 
Physics news on Phys.org
The best way to solve the geodesic equations is when you can find symmetries, called Killing vectors, that lead to conserved quantities.

The Wiki article on Killing vector field, <<link>>, might help.

If you write out the line element for the godel metric that you're using, I might be able to do a bit better writeup.

You might also look at the wiki (or a textbook) on the Schwarzschild geodesics, <<link>>. The point is that ##\xi^a = \delta^a_0## is a Killing vector, because the metric is independent of ##x^0##, where ##x^0## represent time. We can lower the index by writing ##\xi_b = g_{ab} \xi^a = g_{ab} \delta^a_0##.

This yields the result that ##g_{00} \frac{dt}{d\tau}## is constant along the geodesic, here t is a synonym for ##x^0##. The constant E is basically interpretable as a constant energy along the geodesic , it's constant because the metric doesn't depend on time. Wiki writes

$$(1 - \frac{r_s}{r}) \frac{dt}{d\tau} = E$$

where E is some constant. Wiki writes this constant that I call E as E/mc^2 . But c^2 is just another constant for unit conversions, and m is another constant, the mass of the test particle following the geodesic. If we're just interested in the geodesic curve, we don't really need to sepcify m an can set it to unity.
 
  • Like
Likes space-time
Wow. Thank you for your reply. You asked me to write out the line element, so here you go:

ds2 = (1/2ω2)[-(cdt + exdz)2 + dx2 + dy2 + (1/2)e2xdz2]
 
space-time said:
Wow. Thank you for your reply. You asked me to write out the line element, so here you go:

ds2 = (1/2ω2)[-(cdt + exdz)2 + dx2 + dy2 + (1/2)e2xdz2]

This has at least 3 Killing vectors, due to the independence of the metric from t,y,z. Physically, this should correspond to a conserved energy and two conserved momenta, P_y and P_z.

I get, for the line element you gave

$$E(\tau) = -\frac{1}{2} \omega^2 *(c^2 \frac{dt}{d\tau} + c \,e^x\,\frac{dz}{d\tau} )$$
$$P_y(\tau) = \frac{1}{2} \omega^2 \frac{dy}{d\tau}$$
$$P_z(\tau)= -\frac{1}{2} \omega^2 (c \, e^x \frac{dt}{d\tau} + \frac{1}{2} e^{2x} \frac{dz}{d\tau} ) $$

So three of the geodesic equations should reduce to ##dE/d\tau = 0## , ##dP_y / d\tau = 0##, and ##dP_z / d\tau = 0##.

Wiki gives two more Killing vectors for this metric in <<link>>, the simpliest which is ##\xi^a = \frac{\partial}{\partial x} - z \frac{\partial}{\partial z}##. This should give you the fourth independent equation you need, namely

$$P_k(\tau) = \frac{1}{2} \omega^2 (c\, z \, e^x \frac{\partial t}{\partial \tau} + \frac{\partial x}{\partial \tau} + \frac{1}{2} \,z\,e^{2x} \frac{\partial z}{\partial \tau} )$$

This should give you enough to solve the geodesic equations. I'd suggest a symbolic algebra package, the only free one I know of is maxima <<link>>.

I tried not to make typos, but - no guarantees.

There are some some much better symbolic algebra packages out there than Maxima with support for differential geometry and general relativity, but I don't know of any free ones other than Maxima. Maple (esp. with GRTensor) and Mathematica are two of the popular but expensive ones. GRTensor is rather nice, but it seems difficult to get it to run under modern versions of Maple. GRTensor is free, but it requires Maple, which is not free, to work. Maple also has native differential geometry support in it's latest version.



 
Sagemath (SageManifold) is free and powerful enough for said calculations. You could look at their example worksheets: Sagemath
 
  • Like
Likes vanhees71
OK, so this has bugged me for a while about the equivalence principle and the black hole information paradox. If black holes "evaporate" via Hawking radiation, then they cannot exist forever. So, from my external perspective, watching the person fall in, they slow down, freeze, and redshift to "nothing," but never cross the event horizon. Does the equivalence principle say my perspective is valid? If it does, is it possible that that person really never crossed the event horizon? The...
ASSUMPTIONS 1. Two identical clocks A and B in the same inertial frame are stationary relative to each other a fixed distance L apart. Time passes at the same rate for both. 2. Both clocks are able to send/receive light signals and to write/read the send/receive times into signals. 3. The speed of light is anisotropic. METHOD 1. At time t[A1] and time t[B1], clock A sends a light signal to clock B. The clock B time is unknown to A. 2. Clock B receives the signal from A at time t[B2] and...
From $$0 = \delta(g^{\alpha\mu}g_{\mu\nu}) = g^{\alpha\mu} \delta g_{\mu\nu} + g_{\mu\nu} \delta g^{\alpha\mu}$$ we have $$g^{\alpha\mu} \delta g_{\mu\nu} = -g_{\mu\nu} \delta g^{\alpha\mu} \,\, . $$ Multiply both sides by ##g_{\alpha\beta}## to get $$\delta g_{\beta\nu} = -g_{\alpha\beta} g_{\mu\nu} \delta g^{\alpha\mu} \qquad(*)$$ (This is Dirac's eq. (26.9) in "GTR".) On the other hand, the variation ##\delta g^{\alpha\mu} = \bar{g}^{\alpha\mu} - g^{\alpha\mu}## should be a tensor...

Similar threads

Replies
10
Views
2K
Replies
15
Views
2K
Replies
17
Views
2K
Replies
5
Views
1K
Replies
38
Views
5K
Replies
2
Views
3K
Replies
11
Views
2K
Back
Top