NewtonApple
- 45
- 0
Homework Statement
Solving part (c) which should be
\overrightarrow{r}.(\nabla.\overrightarrow{r)}\neq\left(r\nabla\right)r
2. Homework Equations
Let \nabla=\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}
and \overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}
r = \mid r\mid=\sqrt{x^{2}+y^{2}+z^{2}}
The Attempt at a Solution
Consider left side of the inequality.
Now \nabla.\overrightarrow{r}=<br /> (\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}<br /> ).\left(x\hat{i}+y\hat{j}+z\hat{k}\right)=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=1+1+1=3
L.H.S. =\overrightarrow{r}.(\nabla.\overrightarrow{r})
L.H.S. = \left(\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right).3=3\overrightarrow{r}
Now consider right side of the inequality.
\left(r\nabla\right)=\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)\left(\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right)
\left(r\nabla\right) =\hat{i}\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}+\hat{j}\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}+\hat{k}\frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}
\left(r\nabla\right)=\hat{i}\frac{2x}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{j}\frac{2y}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{k}\frac{2z}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}
\left(r\nabla\right)=<br /> \hat{i}x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{j}y\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{k}z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}
\left(r\nabla\right)=\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}
R.H.S. =r\left(r\nabla\right)=\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\overrightarrow{r}
Hence L.H.S. \neq R.H.S.