Solving Gradient Problem (c): LHS ≠ RHS

  • Thread starter Thread starter NewtonApple
  • Start date Start date
  • Tags Tags
    Gradient
NewtonApple
Messages
45
Reaction score
0

Homework Statement


image024.gif
[/B]
Solving part (c) which should be
\overrightarrow{r}.(\nabla.\overrightarrow{r)}\neq\left(r\nabla\right)r

2. Homework Equations


Let \nabla=\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}

and \overrightarrow{r}=x\hat{i}+y\hat{j}+z\hat{k}
r = \mid r\mid=\sqrt{x^{2}+y^{2}+z^{2}}

The Attempt at a Solution



Consider left side of the inequality.

Now \nabla.\overrightarrow{r}=<br /> (\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}<br /> ).\left(x\hat{i}+y\hat{j}+z\hat{k}\right)=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=1+1+1=3

L.H.S. =\overrightarrow{r}.(\nabla.\overrightarrow{r})

L.H.S. = \left(\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right).3=3\overrightarrow{r}


Now consider right side of the inequality.

\left(r\nabla\right)=\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)\left(\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right)

\left(r\nabla\right) =\hat{i}\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}+\hat{j}\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}+\hat{k}\frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}

\left(r\nabla\right)=\hat{i}\frac{2x}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{j}\frac{2y}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{k}\frac{2z}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}

\left(r\nabla\right)=<br /> \hat{i}x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{j}y\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{k}z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}

\left(r\nabla\right)=\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}

R.H.S. =r\left(r\nabla\right)=\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\overrightarrow{r}

Hence L.H.S. \neq R.H.S.
 
Physics news on Phys.org
NewtonApple said:

Homework Statement


View attachment 77205 [/B]
Solving part (c) which should be
\overrightarrow{r}.(\nabla.\overrightarrow{r)}\neq\left(r\nabla\right)r
That still can't be right. See below.

Consider left side of the inequality.

Now \nabla.\overrightarrow{r}=<br /> (\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}<br /> ).\left(x\hat{i}+y\hat{j}+z\hat{k}\right)=\frac{\partial x}{\partial x}+\frac{\partial y}{\partial y}+\frac{\partial z}{\partial z}=1+1+1=3

L.H.S. =\overrightarrow{r}.(\nabla.\overrightarrow{r})

L.H.S. = \left(\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right).3=3\overrightarrow{r}
Your last line is incorrect. You found ##\nabla\cdot\vec{r} = 3##, so you should have ##\vec{r}\cdot(\nabla\cdot\vec{r}) = \vec{r}\cdot 3##, which doesn't make sense because you can't dot a vector with a scalar.
Now consider right side of the inequality.

\left(r\nabla\right)=\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)\left(\hat{i}\frac{\partial}{\partial x}+\hat{j}\frac{\partial}{\partial y}+\hat{k}\frac{\partial}{\partial z}\right)

\left(r\nabla\right) =\hat{i}\frac{\partial}{\partial x}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}+\hat{j}\frac{\partial}{\partial y}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}+\hat{k}\frac{\partial}{\partial z}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{1}{2}}
You can't change the order of ##r## and ##\nabla##. The expression on the RHS is equal to ##\nabla r##, not ##r \nabla##.

\left(r\nabla\right)=\hat{i}\frac{2x}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{j}\frac{2y}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{k}\frac{2z}{2}\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}

\left(r\nabla\right)=<br /> \hat{i}x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{j}y\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}+\hat{k}z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{1}{2}}

\left(r\nabla\right)=\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}
What you actually calculated is ##\nabla r = \hat{r}##. It's not for nothing, however, as you need this to correctly evaluate the righthand side.

R.H.S. =r\left(r\nabla\right)=\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)\frac{x\hat{i}+y\hat{j}+z\hat{k}}{\sqrt{x^{2}+y^{2}+z^{2}}}=\overrightarrow{r}

Hence L.H.S. \neq R.H.S.
The RHS you started with was ##r\nabla r##. At the end, you incorrectly say it's ##r(r\nabla)##.
 
  • Like
Likes NewtonApple
Thx Vela! I'll give it another try.

There is a misprint in the problem statement.
image024.gif

I think (c) part should be \overrightarrow{r}.(\nabla.\overrightarrow{r)}\neq\left(r\nabla\right)r
Are you OK with it?
 
No.
 
NewtonApple said:
##r = \mid r\mid=\sqrt{x^{2}+y^{2}+z^{2}}##
In the photocopied text, all occurrences of 'r' are in bold, implying vectors.
 
In your chapter 1 in the Chow book, under "Formulas involving ##\nabla## " , you find ##\nabla\cdot {\bf r} = 3## and ##({\bf A}\cdot \nabla){\bf r} = {\bf A}## for A any differentiable vector field function. Substituting ##{\bf A} = {\bf r}## gives ##({\bf r}\cdot \nabla){\bf r} = {\bf r}##.

##{\bf r} \cdot (\nabla\cdot {\bf r}) ## would be a vector dotted into a scalar. Doesn't make sense.

And in ##({\bf r} \nabla){\bf r} = {\bf r}## the ##({\bf r} \nabla){\bf r}## (without the ##\cdot## ) could be a matrix for all we know.

As in 1.18(b), mr Chow seems to be a bit sloppy, or at least inconsistent with his notation. Best I can make of it is that he wants you to prove that
##{\bf r} \; (\nabla\cdot {\bf r}) \ne ({\bf r} \cdot \nabla)\;{\bf r} ##, which by now should be a piece of cake for you :)
 
  • Like
Likes NewtonApple
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top