Solving Homework Equations for Relativistic Rocket

AI Thread Summary
The discussion focuses on solving homework equations related to a relativistic rocket's speed after fuel ejection. The initial part establishes that the final speed of a non-relativistic rocket is given by vf = v0 ln(1 + M/m). The second part addresses a relativistic scenario where fuel is annihilated into photons, leading to the equation 1 + M/m = [(c + vf)/(c - vf)]^0.5 for the final speed. The attempt to solve this involves momentum conservation and the relationship between energy and momentum for photons. The poster seeks clarification on the correct expression for the energy of emitted photons in this context.
joker_900
Messages
53
Reaction score
0

Homework Statement




I've done the first part, I'm just posting it for completeness

A rocket at rest in deep space has a body of mass m and carries an initial mass
M of fuel, which is ejected at non-relativistic speed v0 relative to the rocket. Show that
the speed of the rocket vf after all the fuel is ejected is given by

vf = v0 ln(1 + M/m)

Now consider the case of a relativistic rocket, where matter/antimatter fuel is
annihilated and expelled from the rocket as photons. Show that the final speed of this
rocket is given by

1 + M/m = [(c + vf)/(c - vf)]^0.5

Homework Equations





The Attempt at a Solution



So for the second bit: I called the mass at any instant n, and attempted to conserve momentum:

y1(n + &n)v = y2(v + &v)n - p

Where y1 is the gamme for the velocity before the emission of a small fuel element &n (the & is supposed to be a delta), and y2 is the gamme for the velocity of the rocket after emission.

y1(n - dn)v = y2(v + dv)n - E

Where E is the energy of the emitted photon(s). Here's where I get stuck. Is E = &nc^2 or E = y1 &nc^2 or something else?
 
Physics news on Phys.org
Consider the initial and final states only.

Let E and p be the magnitudes of the total energy and total momentum of the photons respectively. (It does not matter that the photons have been emitted at different times, since all of the travel at the same speed c anyway.) Let g denote gamma(v).

E = pc (for photons).

P = mgv, since the magnitude of the final momentum of the rocket must be equal to that of the photons.

Now use the fact that the initial energy must be equal to the final energy of the rocket and the photons.
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top