Solving "If the Photon Had Mass m" Problem with Gauss' Law

saleem
Messages
4
Reaction score
0
hi

I have this question, I need your help:

If the photon had mass "m" , show that the Gauss' law would no longer be true.
Note that the electric poential for a point charge would then have a form
V(r) = e/r exp ( -mc/h * r )

Thank you
 
Physics news on Phys.org
Gauss law holds because \nabla E = 4 \pi \rho with E = - \nabla \phi. In case of electrostatics (no time dependence) this condition is the same than the wave equation of \phi in the Lorenz gauge. Now the point is that if the photon had mass \phi would not longer satisfy a wave equation but a Klein-Gordon equation. For the second part of the exercise, rewrite the Klein-Gordon equation in spherical coordinates and integrate to find \phi.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top