Solving Improper Integrals: Do First Two Equal Third?

  • Thread starter Thread starter kingwinner
  • Start date Start date
  • Tags Tags
    Integrals
kingwinner
Messages
1,266
Reaction score
0

Homework Statement


-∞
∫f(t)dt
a

b
∫f(t)dt
-∞

b
∫f(t)dt
a

Now add the first two integrals, do we get the third integral?

Homework Equations


N/A


The Attempt at a Solution


Suppose we have

c
∫f(t)dt
a

b
∫f(t)dt
c

b
∫f(t)dt
a

Then adding the first two integrals will give the third integral, but what happens in the case of improper integrals?
 
Physics news on Phys.org
this would hold, i assume, if
-∞
∫f(t)dt
a

b
∫f(t)dt
-∞


would converge.
 
So the property
eq0017M.gif
holds also for improper integrals?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top