wahoo2000
- 37
- 0
Aha.. but then
u(1,0)= -\frac{32}{\pi^{4}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2m+1)^{4}}*-(-1)^{m}*1-\frac{1}{6}+\frac{1}{2}+1=1<br /> \Rightarrow \sum_{m=0}^{\infty} \frac{1}{(2m+1)^{4}}=(1-\frac{4}{3})*(-\frac{\pi^{2}}{32})=\frac{\pi^{4}}{96}<br /> <br />
u(1,0)= -\frac{32}{\pi^{4}} \sum_{m=0}^{\infty} \frac{(-1)^{m}}{(2m+1)^{4}}*-(-1)^{m}*1-\frac{1}{6}+\frac{1}{2}+1=1<br /> \Rightarrow \sum_{m=0}^{\infty} \frac{1}{(2m+1)^{4}}=(1-\frac{4}{3})*(-\frac{\pi^{2}}{32})=\frac{\pi^{4}}{96}<br /> <br />
Last edited: