x.users said:
1/[(x-1)(x+1)((x-1)(x+1)+2)+2]
and you can use this web
http://integrals.wolfram.com/index.jsp
How can you Partial Fraction
this?
\frac{1}{(x - 1) (x + 1) ((x - 1)(x + 1) + 2) + 2}?
For the first one, you can try the following:
\int \frac{dx}{x ^ 4 + 1} = \frac{1}{2} \int \frac{(x ^ 2 + 1) - (x ^ 2 - 1)}{x ^ 4 + 1} dx = \frac{1}{2} \left( \int \frac{x ^ 2 + 1}{x ^ 4 + 1} dx + \int \frac{x ^ 2 - 1}{x ^ 4 + 1} dx \right) = \frac{1}{2} (I_1 + I_2)
I_1 = \int \frac{x ^ 2 + 1}{x ^ 4 + 1} dx = \int \frac{1 + \frac{1}{x ^ 2}}{x ^ 2 + \frac{1}{x ^ 2}} dx = \int \frac{1 + \frac{1}{x ^ 2}}{\left( x - \frac{1}{x} \right) ^ 2 + 2} dx
Now, make the u-substitution: u = x - \frac{1}{x} \Rightarrow du = \left(1 + \frac{1}{x ^ 2} \right) dx, your integral will become:
I_1 = \int \frac{du}{u ^ 2 + (\sqrt{2}) ^ 2} = \frac{1}{\sqrt{2}} \arctan \left( \frac{u}{\sqrt{2}} \right) + C_1 = \frac{1}{\sqrt{2}} \arctan \left( \frac{x + \frac{1}{x}}{\sqrt{2}} \right) + C_1
The second integral can be done by the u-substitution: u = x + \frac{1}{x}
I_2 = \int \frac{x ^ 2 - 1}{x ^ 4 + 1} dx = \int \frac{1 - \frac{1}{x ^ 2}}{x ^ 2 + \frac{1}{x ^ 2}} dx = \int \frac{1 - \frac{1}{x ^ 2}}{\left( x + \frac{1}{x} \right) ^ 2 - 2} dx = ...
Can you go from here? :)