- 1,753
- 143
From the class notes:
\begin{array}{l}<br /> y'' + 8y' + 16y = te^{ - 4t} ,\,\,\,\,\,y\left( 0 \right) = y'\left( 0 \right) = 0 \\ <br /> \\ <br /> L\left[ {y''} \right] + 8L\left[ {y'} \right] + 16L\left[ y \right] = \frac{1}{{\left( {s + 4} \right)^2 }} \\ <br /> \end{array}
How did he get \frac{1}{{\left( {s + 4} \right)^2 }} ?
From the table, t = \frac{1}{{s^2 }} and e^{at} \to \frac{1}{{s - a}}
How do these combine to give \frac{1}{{\left( {s + 4} \right)^2 }} ?
The next line is
s^2 y\left( s \right) - sy\left( 0 \right) - y'\left( 0 \right) + 8\left( {sy\left( s \right) - y\left( 0 \right) + 16y\left( s \right)} \right) = \frac{1}{{\left( {s + 4} \right)^2 }}
Where did everything on the left side of = come from? The table doesn’t have y’’ or y’.
After this, the problem looks like it turns into algebra.
\begin{array}{l}<br /> y'' + 8y' + 16y = te^{ - 4t} ,\,\,\,\,\,y\left( 0 \right) = y'\left( 0 \right) = 0 \\ <br /> \\ <br /> L\left[ {y''} \right] + 8L\left[ {y'} \right] + 16L\left[ y \right] = \frac{1}{{\left( {s + 4} \right)^2 }} \\ <br /> \end{array}
How did he get \frac{1}{{\left( {s + 4} \right)^2 }} ?
From the table, t = \frac{1}{{s^2 }} and e^{at} \to \frac{1}{{s - a}}
How do these combine to give \frac{1}{{\left( {s + 4} \right)^2 }} ?
The next line is
s^2 y\left( s \right) - sy\left( 0 \right) - y'\left( 0 \right) + 8\left( {sy\left( s \right) - y\left( 0 \right) + 16y\left( s \right)} \right) = \frac{1}{{\left( {s + 4} \right)^2 }}
Where did everything on the left side of = come from? The table doesn’t have y’’ or y’.
After this, the problem looks like it turns into algebra.