Solving Limit: Cos(xy) - 1 over x^2 y^2

  • Thread starter Thread starter Kuma
  • Start date Start date
  • Tags Tags
    Limit
Kuma
Messages
129
Reaction score
0

Homework Statement




question asks:

lim(x,y) -> (0,0)

cos(xy) -1 / [x^2 y^2]


Homework Equations





The Attempt at a Solution



if you multiply the top and bottom by cos(xy) + 1 you get

-[sin^2(xy)/(xy)^2] * [1/cos(xy) + 1]

but in the solution they somehow got rid of the denominator (xy)^2, because if that's there the denominator is still 0. How do you get rid of that?
 
Physics news on Phys.org
The limit u->0 sin(u)/u=1. So limit u->0 sin(u)^2/u^2=1. That's what they did with the first term.
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top