Solving limit using tailor series

  • Thread starter Thread starter transgalactic
  • Start date Start date
  • Tags Tags
    Limit Series
transgalactic
Messages
1,386
Reaction score
0
<br /> \lim _{x-&gt;0} \frac{cos(xe^x)-cos(xe^{-x})}{x^3}\\<br />
<br /> e^x=1+x+O(x^2)\\<br />
<br /> e^{-x}=1-x+O(x^2)\\<br />
<br /> xe^x=x+O(x^2)\\<br />
<br /> cos(x)=1-\frac{1}{2!}x^2+O(x^3)\\<br />
<br /> \lim_{x-&gt;0} \frac{1-\frac{1}{2!}(x+O(x^2))^2+O(x^3)-1+\frac{1}{2!}(x+O(x^2))^2+O(x^3)}{x^3}<br />

but i don't know how to deal with the remainders
there squaring of them etc..

??
 
Physics news on Phys.org
Hi transgalactic! :smile:

hmm … from the x3 on the bottom, I'd guess you need to specify the x2 terms as well, and not start the Os until O(x3)

or you could just use cosA - cosB = 2.sin(A+B)/2.sin(A-B)/2 :wink:
 
i substituted functions one into another
that what i got.
where is my mathematical mistake there??

how to open this expression and having one O()
??
 
i tried to solve it again
<br /> \lim _{x-&gt;0} \frac{cos(xe^x)-cos(xe^{-x})}{x^3}\\<br /> e^x=1+x+O(x^2)\\<br /> &lt;br /&gt; e^{-x}=1-x+O(x^2)\\&lt;br /&gt;<br /> &lt;br /&gt; xe^x=x+x^2+O(x^2)&lt;br /&gt;<br /> &lt;br /&gt; xe^{-x}=x-x^2+O(x^2)&lt;br /&gt;<br /> &lt;br /&gt; cos(x)=1-\frac{1}{2!}x^2+O(x^3)\\&lt;br /&gt;<br /> &lt;br /&gt; \lim_{x-&amp;gt;0} \frac{1-\frac{1}{2!}(x+x^2+O(x^2))^2+O(x^3)-1+\frac{1}{2!}(x-x^2+O(x^2))^2+O(x^3)}{x^3}=\\&lt;br /&gt;<br /> &lt;br /&gt; =\lim_{x-&amp;gt;0} \frac{1-\frac{1}{2!}(x^2+O(x^2))+O(x^3)-1+\frac{1}{2!}(x^2+O(x^2))+O(x^3)}{x^3}=0\\&lt;br /&gt;<br /> <br /> the answer is 1/2<br /> why i got 0??
 
Hi transgalactic! :smile:

Thta's actually pretty good, except …
transgalactic said:
cos(x)=1-\frac{1}{2!}x^2+O(x^3)\\

should be O(x4) at the end, not O(x3)

and in the last line you should have x3 terms also …

they're the ones that don't cancel! :smile:

(and btw, it's "taylor", and why do you keep writing 2! instead of just 2? :wink:)
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top