transgalactic
- 1,386
- 0
<br />
\lim _{x->0} \frac{cos(xe^x)-cos(xe^{-x})}{x^3}\\<br />
<br /> e^x=1+x+O(x^2)\\<br />
<br /> e^{-x}=1-x+O(x^2)\\<br />
<br /> xe^x=x+O(x^2)\\<br />
<br /> cos(x)=1-\frac{1}{2!}x^2+O(x^3)\\<br />
<br /> \lim_{x->0} \frac{1-\frac{1}{2!}(x+O(x^2))^2+O(x^3)-1+\frac{1}{2!}(x+O(x^2))^2+O(x^3)}{x^3}<br />
but i don't know how to deal with the remainders
there squaring of them etc..
??
<br /> e^x=1+x+O(x^2)\\<br />
<br /> e^{-x}=1-x+O(x^2)\\<br />
<br /> xe^x=x+O(x^2)\\<br />
<br /> cos(x)=1-\frac{1}{2!}x^2+O(x^3)\\<br />
<br /> \lim_{x->0} \frac{1-\frac{1}{2!}(x+O(x^2))^2+O(x^3)-1+\frac{1}{2!}(x+O(x^2))^2+O(x^3)}{x^3}<br />
but i don't know how to deal with the remainders
there squaring of them etc..
??