Solving Matrix A: Find All Values of a

  • Thread starter Thread starter losmets90
  • Start date Start date
  • Tags Tags
    Matrix
losmets90
Messages
3
Reaction score
0
Given the matrix
A= [a 1 9]
[a -6 3]
[5 -8 a]

find all values of a that makes
4a602ec89d76de74a9e73df5c71e221.png

give your answers in increasing order.
a can be _ & _

NEED HELP! IM BEYOND STUCK! I have no idea to even approach this problem! Thanks!
 
Last edited by a moderator:
Physics news on Phys.org
I don't understand why you are stuck.
You don't know how to calculate determinants or solve equations?
 
I don't know how to solve the equation
 
\[<br /> \left| {\left. {\bf{A}} \right|} \right. = 285 - 48a - 7a^2 = 0<br /> \]<br />
You can't solve that?
 
oh, now I feel dumb. Thanks for the help!
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top