emma83
- 31
- 0
Hello,
Is the law for matrix multiplication in SL(2,C) the same as usual ? I try to solve the equation A_{k}k_{0}A_{k}^{\dagger}=k where k_0 corresponds to the unit vector \{0,0,1\} and k is an arbitrary vector, i.e.:
k0=<br /> \left( \begin{array}{cc}<br /> 2 & 0 \\<br /> 0 & 0 \\<br /> \end{array} \right)<br />
k=<br /> \left( \begin{array}{cc}<br /> 1+n_3 & n_- \\<br /> n_+ & 1-n_3 \\<br /> \end{array} \right)<br />
If I try to solve for
A_k=<br /> \left( \begin{array}{cc}<br /> a & b \\<br /> c & d \\<br /> \end{array} \right)<br />
this gives (where a* is the conjugate of a):
A_{k}k_{0}A_{k}^{\dagger}=<br /> \left( \begin{array}{cc}<br /> 2aa* & 2ac* \\<br /> 2ca* & 2cc* \\<br /> \end{array} \right)<br />
So this gives conditions on \{a,c\} but can \{b,c\} be arbitrary ? How do I solve this equation and obtain the expression of A_k involving only n_+, n_- and n_3 ?
Thanks a lot for your help!
Is the law for matrix multiplication in SL(2,C) the same as usual ? I try to solve the equation A_{k}k_{0}A_{k}^{\dagger}=k where k_0 corresponds to the unit vector \{0,0,1\} and k is an arbitrary vector, i.e.:
k0=<br /> \left( \begin{array}{cc}<br /> 2 & 0 \\<br /> 0 & 0 \\<br /> \end{array} \right)<br />
k=<br /> \left( \begin{array}{cc}<br /> 1+n_3 & n_- \\<br /> n_+ & 1-n_3 \\<br /> \end{array} \right)<br />
If I try to solve for
A_k=<br /> \left( \begin{array}{cc}<br /> a & b \\<br /> c & d \\<br /> \end{array} \right)<br />
this gives (where a* is the conjugate of a):
A_{k}k_{0}A_{k}^{\dagger}=<br /> \left( \begin{array}{cc}<br /> 2aa* & 2ac* \\<br /> 2ca* & 2cc* \\<br /> \end{array} \right)<br />
So this gives conditions on \{a,c\} but can \{b,c\} be arbitrary ? How do I solve this equation and obtain the expression of A_k involving only n_+, n_- and n_3 ?
Thanks a lot for your help!