Solving Method of Residues Homework Problem

  • Thread starter Thread starter gtfitzpatrick
  • Start date Start date
  • Tags Tags
    Method
gtfitzpatrick
Messages
372
Reaction score
0

Homework Statement



\int^{0}_{2\pi} \frac{d\theta}{13+5sin\theta}

Homework Equations





The Attempt at a Solution



so i changed it using sin \theta = \frac{1}{2i} (z - \frac{1}{z})

and i get\oint \frac{2}{5z^2+26zi-5} which i factored down to (z = \frac{-26±\sqrt{776}}{10})

but no matter how i proceed from here i can't get the answer, any ideas anyone?
 
Physics news on Phys.org
How did you get real roots to a polynomial with complex coefficients?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top