Solving ODEs using Power Series Method

  • Thread starter Thread starter physicsjock
  • Start date Start date
  • Tags Tags
    Ode Series
physicsjock
Messages
84
Reaction score
0
Hey,

I've been trying to solve this ODE using the power series method,

y'' + x^2y = 0,

I end up with (the first sum can start from 0 or 2, i just left it as starting from n=0)

\[\begin{align}<br /> &amp; \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n-2}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+2}}}=0 \\ <br /> &amp; \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+4}}}=0 \\ <br /> &amp; \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=4}^{\infty }{{{a}_{n-4}}{{x}^{n}}}=0 \\ <br /> &amp; \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n-4}}{{x}^{n}}}-{{a}_{-4}}{{x}^{0}}-{{a}_{-3}}x-{{a}_{-2}}{{x}^{2}}-{{a}_{-1}}{{x}^{3}}=0 \\ <br /> &amp; By\,\,Thrm\,\,of\,\,vanishing\,\,coefficients: \\ <br /> &amp; {{a}_{-4}}{{x}^{0}}={{a}_{-3}}x={{a}_{-2}}{{x}^{2}}={{a}_{-1}}{{x}^{3}}=0 \\ <br /> &amp; -n(n-1){{a}_{n}}={{a}_{n-4}}\,\,\,\,\,n=4,5,6,... \\ <br /> \end{align}\]<br />

but I'm having trouble getting an expression for a2n and a2n+1 since n starts at 4 there's no a2 to write a6 in terms of a0 like I am used to doing,

\begin{align}<br /> &amp; n(n-1){{a}_{n}}={{a}_{n-4}} \\ <br /> &amp; {{a}_{4}}=\frac{{{a}_{0}}}{4\cdot 3},{{a}_{3}}=\frac{{{a}_{6}}}{6\cdot 5},... \\ <br /> \end{align}<br />

Is there something I'm missing?

Thanks in advance
 
Physics news on Phys.org
y'' + x^2y = 0
So you use Frobenius method expanding around x0=0, because there are no singularities in the finite interval:
The guess is: \sum\limits_{n=0}^{\infty}a_nx^{n+j},\hspace{10pt}a_0\neq 0
So insert like you did: \sum\limits_{n=0}^{\infty}a_n(n+j)(n+j-1)x^{n+j-2}+a_nx^{n+j+2}
You would like to sum from the same indicies, try taking out the first 4 terms in the 1 term:
a_0j(j-1)x^{j-2}+a_1(1+j)jx^{j-1}+a_2(2+j)(1+j)x^{j}+a_3(3+j)(2+j)x^{j+1}+\sum_{n=4}^{\infty}a_n(n+j)(n+j-1)x^{n+j-2}+\sum_{n=0}^{\infty}a_jx^{n+j+2}
So switch the index in the first sequence:
a_0j(j-1)x^{j-2}+a_1(1+j)jx^{j-1}+a_2(2+j)(1+j)x^{j}+a_3(3+j)(2+j)x^{j+1}+\sum_{n=0}^{\infty}a_{n+4}(n+4+j)(n+j+3)x^{n+j+2}+\sum_{n=0}^{\infty}a_jx^{n+j+2}
Now you can use linear independence of polynomials like you did before and analyse the inicidial equation.
 
Last edited:
No, you don't need the "n+ j" precisely because x= 0 is NOT a singular point.
 
Yeah, guess i did the robot here. Sorry. But isn't it right that fuchs theorem would lead to the conclusion that j=0 from the inicidial equation?
 
Thanks for your replies guys,

I worked on it a little more and for my solutions I get:

\begin{align}<br /> &amp; {{y}_{1}}(x)={{a}_{o}}-\frac{{{a}_{o}}}{3\cdot 4}{{x}^{4}}+\frac{{{a}_{o}}}{3\cdot 4\cdot 7\cdot 8}{{x}^{8}}-\frac{{{a}_{o}}}{3\cdot 4\cdot 7\cdot 8\cdot 11\cdot 12}{{x}^{12}}+... \\ <br /> &amp; {{y}_{2}}(x)={{a}_{1}}x-\frac{{{a}_{1}}}{4\cdot 5}{{x}^{5}}+\frac{{{a}_{1}}}{4\cdot 5\cdot 8\cdot 9}{{x}^{9}}-\frac{{{a}_{1}}}{4\cdot 5\cdot 8\cdot 9\cdot 12\cdot 13}{{x}^{13}}+... \\ <br /> \end{align}

Do they look correct?
I've been trying to find a way to write each of them as sums rather then individual terms but I'm finding it a little hard to write an a2n and an a2n+1 which satisfies the two above solutions.

For example in y2 the factorials go like

3!/5!, 3!7!/5!9!, 3!7!11!/5!9!13!

Is there a way that can be written in terms of n?
 
Last edited:
There are two things I don't understand about this problem. First, when finding the nth root of a number, there should in theory be n solutions. However, the formula produces n+1 roots. Here is how. The first root is simply ##\left(r\right)^{\left(\frac{1}{n}\right)}##. Then you multiply this first root by n additional expressions given by the formula, as you go through k=0,1,...n-1. So you end up with n+1 roots, which cannot be correct. Let me illustrate what I mean. For this...
Back
Top