physicsjock
- 84
- 0
Hey,
I've been trying to solve this ODE using the power series method,
y'' + x^2y = 0,
I end up with (the first sum can start from 0 or 2, i just left it as starting from n=0)
\[\begin{align}<br /> & \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n-2}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+2}}}=0 \\ <br /> & \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+4}}}=0 \\ <br /> & \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=4}^{\infty }{{{a}_{n-4}}{{x}^{n}}}=0 \\ <br /> & \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n-4}}{{x}^{n}}}-{{a}_{-4}}{{x}^{0}}-{{a}_{-3}}x-{{a}_{-2}}{{x}^{2}}-{{a}_{-1}}{{x}^{3}}=0 \\ <br /> & By\,\,Thrm\,\,of\,\,vanishing\,\,coefficients: \\ <br /> & {{a}_{-4}}{{x}^{0}}={{a}_{-3}}x={{a}_{-2}}{{x}^{2}}={{a}_{-1}}{{x}^{3}}=0 \\ <br /> & -n(n-1){{a}_{n}}={{a}_{n-4}}\,\,\,\,\,n=4,5,6,... \\ <br /> \end{align}\]<br />
but I'm having trouble getting an expression for a2n and a2n+1 since n starts at 4 there's no a2 to write a6 in terms of a0 like I am used to doing,
\begin{align}<br /> & n(n-1){{a}_{n}}={{a}_{n-4}} \\ <br /> & {{a}_{4}}=\frac{{{a}_{0}}}{4\cdot 3},{{a}_{3}}=\frac{{{a}_{6}}}{6\cdot 5},... \\ <br /> \end{align}<br />
Is there something I'm missing?
Thanks in advance
I've been trying to solve this ODE using the power series method,
y'' + x^2y = 0,
I end up with (the first sum can start from 0 or 2, i just left it as starting from n=0)
\[\begin{align}<br /> & \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n-2}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+2}}}=0 \\ <br /> & \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n}}{{x}^{n+4}}}=0 \\ <br /> & \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=4}^{\infty }{{{a}_{n-4}}{{x}^{n}}}=0 \\ <br /> & \sum\limits_{n=0\,}^{\infty }{n(n-1){{a}_{n}}{{x}^{n}}+}\sum\limits_{n=0}^{\infty }{{{a}_{n-4}}{{x}^{n}}}-{{a}_{-4}}{{x}^{0}}-{{a}_{-3}}x-{{a}_{-2}}{{x}^{2}}-{{a}_{-1}}{{x}^{3}}=0 \\ <br /> & By\,\,Thrm\,\,of\,\,vanishing\,\,coefficients: \\ <br /> & {{a}_{-4}}{{x}^{0}}={{a}_{-3}}x={{a}_{-2}}{{x}^{2}}={{a}_{-1}}{{x}^{3}}=0 \\ <br /> & -n(n-1){{a}_{n}}={{a}_{n-4}}\,\,\,\,\,n=4,5,6,... \\ <br /> \end{align}\]<br />
but I'm having trouble getting an expression for a2n and a2n+1 since n starts at 4 there's no a2 to write a6 in terms of a0 like I am used to doing,
\begin{align}<br /> & n(n-1){{a}_{n}}={{a}_{n-4}} \\ <br /> & {{a}_{4}}=\frac{{{a}_{0}}}{4\cdot 3},{{a}_{3}}=\frac{{{a}_{6}}}{6\cdot 5},... \\ <br /> \end{align}<br />
Is there something I'm missing?
Thanks in advance