Solving Parabolic Coordinates Homework: Find x,y; Show Kinetic Energy

  • Thread starter Thread starter metgt4
  • Start date Start date
  • Tags Tags
    Coordinates
metgt4
Messages
34
Reaction score
0

Homework Statement


(ξ,η) in a plane are defined by η = (x2 + y2)1/2 - x and ξ = (x2 + y2)1/2 + x

Find x and y in terms of ξ and η. Show that the kinetic energy of a particle of mass m is:

T = (m/8)(ξ + η)(ξ'2/ξ + η'2/η)


The Attempt at a Solution



My attempt is scanned and appended in this post. I found x and y in terms of η and ξ, but am not sure where to go from there in order to find the kinetic energy in terms of the two. If somebody could point me in the right direction, I'd really appreciate it.

Thanks!
Andrew
 

Attachments

  • scan0004.jpg
    scan0004.jpg
    7.3 KB · Views: 468
Physics news on Phys.org
Nevermind, got it figured out. I went wrong in finding x and y as well.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
It's given a gas of particles all identical which has T fixed and spin S. Let's ##g(\epsilon)## the density of orbital states and ##g(\epsilon) = g_0## for ##\forall \epsilon \in [\epsilon_0, \epsilon_1]##, zero otherwise. How to compute the number of accessible quantum states of one particle? This is my attempt, and I suspect that is not good. Let S=0 and then bosons in a system. Simply, if we have the density of orbitals we have to integrate ##g(\epsilon)## and we have...
Back
Top