TsAmE
- 129
- 0
Homework Statement
Evaluate the integral:
\int_{1}^2 \frac{4y^2 - 7y -12}{y(y+2)(y-3)}dy<br />
Homework Equations
None.
The Attempt at a Solution
\frac{4y^2 -7y -12}{y(y+2)(y-3)} = \frac{A}{y} + \frac{B}{y+2} + \frac{D}{y-3}
y = 0: -12 = -6A \rightarrow A=2
y = -2: 16 + 14 - 12 = 10B
18 = 10B \rightarrow B = \frac{18}{10} = \frac{9}{5}
y = 3: 36 - 21 -12 = 15D<br />
3 = 15D \rightarrow D = \frac{3}{15} = \frac{1}{5}
=\int_{1}^2 \frac{2}{y} + \frac {\frac{9}{5}}{y + 2} + \frac{\frac{1}{5}}{y - 3} dy
=2ln|y| + 9ln|5y+2| + ln|y - 3| ]_{1}^{2}
2ln2 + 9ln12 - (9ln7 + ln2)
ln2 + 9ln12 - 9ln7<br /> <br />
The correct answer is \frac {27}{5}ln2 - \frac{9}{5}ln3 but I can't see what I did wrong.