Solving Projectile Motion Equation for Distance

AI Thread Summary
The discussion focuses on deriving a distance equation for a projectile launched at an angle from a height, incorporating variables d, alpha, and beta. The user has utilized conservation of energy principles to relate kinetic and potential energy but seeks clarification on the system's mechanics, particularly the role of the rotating pole and the applied force from a spring. It is noted that the final distance depends on the force applied during the pole's rotation from angle alpha to beta. The user plans to optimize the angles and spring energy using Excel's solver tool. Overall, the conversation emphasizes the need for a clear relationship between the variables involved in the projectile motion equation.
roldy
Messages
206
Reaction score
2
Could someone help me come up with the distance equation for a projectile that is launched at an angle and initially at a height. I need figure out a relationship between distance, alpha, and beta. The final equation should contain only variables d, alpha, and beta.

The knowns:
  1. The mass of the projectile is .021 kg
  2. The distance from the pivot point of the pole to the ground is .2 meters

The unknowns:

  1. The velocity of the projectile when the pole is at angle beta
  2. The final distance
  3. The angles beta and alpha

Here's what I've tried to do:

I started with the conservation of energy.
KE1=0
PE1=mgh1
KE2=1/2mV22
PE2=mgh2

I think I have solved this problem. I will scan in my work sometime and would like to see if I'm on the right track. If anyone could help with this problem it would be awesome. This problem is a theoretical problem for a design project I'm working on.
 

Attachments

  • diagram.jpg
    diagram.jpg
    27.4 KB · Views: 451
Physics news on Phys.org
I think you need to be specific as to how the system actually works. Is the long pole rotating clockwise while applying a force on the projectile from angle alpha to beta? If this is the situation, then you can get an equation involving F, alpha, beta, and d. You would not be able to get an equation with just alpha, beta, and d (d is completely dependent on the force applied over the range theta=alpha to theta=beta).

If you had the force as a function of theta, then you could integrate over theta=alpha to theta=beta to get the work done, and then from there you can deduce the kinetic energy, velocity direction, and position upon release, and it becomes elementary.
 
Sorry about that, the long pole does rotate clockwise. The force that is applied to this system is done by a spring that will be attached from the pole to the front of the setup. I know that as the pole will be rotated back initially the spring will get stretched around the shaft a little but I'm neglecting that. In the equations I have derived, I will optimize the angles alpha, beta and the energy of the spring using the excel solver tool. Attached is what I think the equation looks like.
 

Attachments

So I see everyone gave up.
 
TL;DR Summary: I came across this question from a Sri Lankan A-level textbook. Question - An ice cube with a length of 10 cm is immersed in water at 0 °C. An observer observes the ice cube from the water, and it seems to be 7.75 cm long. If the refractive index of water is 4/3, find the height of the ice cube immersed in the water. I could not understand how the apparent height of the ice cube in the water depends on the height of the ice cube immersed in the water. Does anyone have an...
Thread 'Variable mass system : water sprayed into a moving container'
Starting with the mass considerations #m(t)# is mass of water #M_{c}# mass of container and #M(t)# mass of total system $$M(t) = M_{C} + m(t)$$ $$\Rightarrow \frac{dM(t)}{dt} = \frac{dm(t)}{dt}$$ $$P_i = Mv + u \, dm$$ $$P_f = (M + dm)(v + dv)$$ $$\Delta P = M \, dv + (v - u) \, dm$$ $$F = \frac{dP}{dt} = M \frac{dv}{dt} + (v - u) \frac{dm}{dt}$$ $$F = u \frac{dm}{dt} = \rho A u^2$$ from conservation of momentum , the cannon recoils with the same force which it applies. $$\quad \frac{dm}{dt}...
Back
Top