Solving Real Vector Space R>3 Bases Problems

  • Thread starter Thread starter blanik
  • Start date Start date
  • Tags Tags
    Bases
AI Thread Summary
The discussion revolves around solving homework problems related to the real vector space R>3 and determining whether a given set of vectors forms a basis. The user is struggling to express the standard basis vectors in terms of a new basis and has attempted various methods, including matrix operations. Participants suggest checking the linear independence of the vectors by calculating the determinant and correcting errors in the matrix inverse. Ultimately, the user acknowledges a math error and appreciates the assistance, indicating progress in understanding the problem.
blanik
Messages
14
Reaction score
0
I have two homework problems that I am at a loss on where to start. I am going to see the TA tomorrow, but I would like to start on the problems tonight.


The question is (the row vectors I show are actually written as column vectors on the homework):

Consider the real vector space R>3. One basis we can use is called the Standard Basis. This is the basis
B={|e1>=(1 0 0), |e2>=(0 1 0), |e3>=(0 0 1)}
Show that the set of vectors
B'={|a1>=(1 0 -1), |a2>=(1 2 1), |a3>=(0 -3 2)}
is also a basis for R>3. Express each of the vectors of the standard basis in terms of these new basis vectors. (Hint: To check if you are on the right track, you should get that
|e1>=-7/10|a1> + 3/10|a2> + 2/5|a3> = (-7/10 3/10 2/5)
but you need to show this and find the other two.

I need a little help getting started. I tried: B = {i+j,i-j,k} where i+j=|v> and i-j=|w> and i=1/2(v+w) and j=1/2(v-w). I have also tried combing a1, a2 & a3 to be a 3x3 matrix and multiply by each e, but that didn't work either.

Thanks!
 
Physics news on Phys.org
In this case it suffices to show that vectors from B' are linearly independent. So, you can construct the determinant which has vector's coordinates as columns (or rows). Which property must have this determinant if a1, a2 and a3 are linearly independent?
Do you know what is matrix for linear transformation? If yes, than the inverse of that will help you to find coordinates of standart basis vectors in new basis.
P.S Hooray! It's my 100th post here! It's great place!
P.P.S. Welcome, Blanik!
 
Thanks! That helped alot. I am much closer, but I am still not coming up the same numbers for his |e1>.

Here is what I did:
If a1,a2 &a3 = matrix A,
then A = 1 1 0
0 2 -3
-1 1 2

The determinant of A = 10
The inverse of A is:
A-1 = (1/10) 7 -2 -3
3 2 3
2 0 2

So, I get |e1> = 7/10
3/10
1/5
But, the problem says |e1> should be = -7/10
3/10
2/5
So, mine differs with the first value having the opposite sign and I am off by a factor of two for the last value.

Any suggestions?
 
There are 2 points:
1. Your inverse is incorrect. I believe correct is 1/10\[ \left( \begin{array}{ccc}<br /> 7 &amp; -2 &amp; -3 \\<br /> 3 &amp; 2 &amp; 3 \\<br /> 2 &amp; -2 &amp; 2 \end{array} \right)\]

2.
B={|e1>=(1 0 0), |e2>=(0 1 0), |e3>=(0 0 1)}
Show that the set of vectors
B'={|a1>=(1 0 -1), |a2>=(1 2 1), |a3>=(0 -3 2)}
is also a basis for R>3. Express each of the vectors of the standard basis in terms of these new basis vectors. (Hint: To check if you are on the right track, you should get that
|e1>=-7/10|a1> + 3/10|a2> + 2/5|a3> = (-7/10 3/10 2/5)

You shouldn't get it if you're on the right track. In standart basis -7/10|a1> + 3/10|a2> + 2/5|a3> doesn't gives e1. I believe you see it. That hint is incorrect
 
I thought that the hint might be wrong... thanks for clarifying. I caught my math error too for the zero value in the inverse matrix.

Thanks so much for your help!
 
Thread 'Collision of a bullet on a rod-string system: query'
In this question, I have a question. I am NOT trying to solve it, but it is just a conceptual question. Consider the point on the rod, which connects the string and the rod. My question: just before and after the collision, is ANGULAR momentum CONSERVED about this point? Lets call the point which connects the string and rod as P. Why am I asking this? : it is clear from the scenario that the point of concern, which connects the string and the rod, moves in a circular path due to the string...
Thread 'A cylinder connected to a hanged mass'
Let's declare that for the cylinder, mass = M = 10 kg Radius = R = 4 m For the wall and the floor, Friction coeff = ##\mu## = 0.5 For the hanging mass, mass = m = 11 kg First, we divide the force according to their respective plane (x and y thing, correct me if I'm wrong) and according to which, cylinder or the hanging mass, they're working on. Force on the hanging mass $$mg - T = ma$$ Force(Cylinder) on y $$N_f + f_w - Mg = 0$$ Force(Cylinder) on x $$T + f_f - N_w = Ma$$ There's also...
Back
Top