Solving Reflection Coefficient for Step Potential: Why B ≠ 0?

Thyestean
Messages
2
Reaction score
0

Homework Statement


I'm working through a step potential and I am confused as to why one of the coefficients doesn't go to zero.

V(x) = 0 when x < 0;
V(x) = V_not when x > 0;

a. Calculate reflection coefficient when E < V_not
I can solve the reflection part, it is a step towards it that i am confused about.

Homework Equations





The Attempt at a Solution


Now i know the solutions solve to:

Aexp(ikx)+Bexp(-ikx) where k= sqrt(2mE)/hbar when x<0
Cexp(lx) where l=sqrt(-2m(E-V_not)/hbar when x>0

So my question is why doesn't B=0? Because when x->-infinity it goes to infinity so B has to be 0. The only reason i can think it wouldn't is because of tunneling. If this is the case how do I spot this. Is it only relevant in step potentials?
 
Physics news on Phys.org
e-ikx is oscillatory. It doesn't blow up as x goes to -∞.
 
Ah thank you. Now that brings up another question for the same problem but now E>Vo.

The wave equations go to:
Aexp(ikx) + Bexp(-ikx) when x < 0. k=sqrt(2mE)/hbar
Cexp(ilx) + Dexp(-ilx) when x > 0. l=sqrt(2m(E-Vo))/hbar

Now in this case why does D=0.
 
It's a boundary condition essentially. The idea here is you have an incident wave coming from the left. That corresponds to the A term. When it hits the potential step, you get a reflection, the B term, and a transmitted wave, the C term. The D term would correspond to a wave traveling to the right from x=+∞. You could certainly solve a problem with D not equal to 0, but it would be a different physical situation than the one you're interested in.
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...

Similar threads

Replies
7
Views
2K
Replies
10
Views
2K
Replies
20
Views
2K
Replies
1
Views
2K
Replies
4
Views
2K
Replies
12
Views
2K
Replies
13
Views
4K
Back
Top