Solving Relativistic Collision using Four Momentum Vector

darkmatter820
Messages
4
Reaction score
0
1. A particle of mass M decays from rest into two particles. One particle has mass m and the other particle is massless. The momentum of the massless particle is...
2. Ei = Ef, Pi= Pf
3. This is a GRE practice problem. I can solve this problem using the old method as listed in the step 2, but I just learned about four momentum yesterday and it seems to be the fastest way so far to solve these kind of problems; but I'm struggling to solve this problem with this method.

My attempt: P1 =(Mc^2/c,0), P2= (mc^2/c, pm), P3 = (E/c, p*); P1 is the initial energy-momentum vector, P2 is the final energy momentum for the particle with mass m, and P3 is the vector for massless particle. I also assumed the massless particle is moving at c. Then,
P1= P2+P3,
P1°P1 = (P2+P3)°(P2+P3), p* = E, c =1.

This is as far as I can go. I might have made some mistakes somewhere, so please be specific when you response so I correct them next time. Thanks in advance! Cheers
 
Physics news on Phys.org
The four-momentum for particle 2 isn't correct. Its energy isn't simply its rest energy. Also, use the fact that the two particles have to have opposite but equal three-momenta to write
\begin{eqnarray}
p_1 &= (Mc, 0) \\
p_2 &= (E_2/c, p) \\
p_3 &= (p, -p)
\end{eqnarray}
 
Hi Vela, with the correction I got (M^2 -m^2)/2 = p^2 + p(p^2+m^2)^(1/2), with E = (p^2+m^2)^(1/2), and c = 1, which is kind of nasty (for me at least). So is four- momentum always the quickest way or just depends on the problem? Thanks
 
Try using conservation of energy to solve for E2 instead, then you'll have a comparatively simple expression from which you can isolate p.

Occasionally, there are problems where not using four-vectors is an easier route, but I've found that more often than not using four-vectors is much simpler. The thing with SR is that if you take a suboptimal approach, you can sometimes go in circles with the algebra. You learn how to avoid that with practice.
 
##|\Psi|^2=\frac{1}{\sqrt{\pi b^2}}\exp(\frac{-(x-x_0)^2}{b^2}).## ##\braket{x}=\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dx\,x\exp(-\frac{(x-x_0)^2}{b^2}).## ##y=x-x_0 \quad x=y+x_0 \quad dy=dx.## The boundaries remain infinite, I believe. ##\frac{1}{\sqrt{\pi b^2}}\int_{-\infty}^{\infty}dy(y+x_0)\exp(\frac{-y^2}{b^2}).## ##\frac{2}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,y\exp(\frac{-y^2}{b^2})+\frac{2x_0}{\sqrt{\pi b^2}}\int_0^{\infty}dy\,\exp(-\frac{y^2}{b^2}).## I then resolved the two...
Hello everyone, I’m considering a point charge q that oscillates harmonically about the origin along the z-axis, e.g. $$z_{q}(t)= A\sin(wt)$$ In a strongly simplified / quasi-instantaneous approximation I ignore retardation and take the electric field at the position ##r=(x,y,z)## simply to be the “Coulomb field at the charge’s instantaneous position”: $$E(r,t)=\frac{q}{4\pi\varepsilon_{0}}\frac{r-r_{q}(t)}{||r-r_{q}(t)||^{3}}$$ with $$r_{q}(t)=(0,0,z_{q}(t))$$ (I’m aware this isn’t...
Hi, I had an exam and I completely messed up a problem. Especially one part which was necessary for the rest of the problem. Basically, I have a wormhole metric: $$(ds)^2 = -(dt)^2 + (dr)^2 + (r^2 + b^2)( (d\theta)^2 + sin^2 \theta (d\phi)^2 )$$ Where ##b=1## with an orbit only in the equatorial plane. We also know from the question that the orbit must satisfy this relationship: $$\varepsilon = \frac{1}{2} (\frac{dr}{d\tau})^2 + V_{eff}(r)$$ Ultimately, I was tasked to find the initial...
Back
Top