Solving Retarded Potentials Homework: Electric & Magnetic Fields

  • Thread starter Thread starter stunner5000pt
  • Start date Start date
  • Tags Tags
    Potentials
stunner5000pt
Messages
1,443
Reaction score
4

Homework Statement


Suppose a wire carries a current such taht
I(t) = 0 for t< = 0
= k t for t > 0
Find the electric and magnetic fields generated

2. The attempt at a solution
trying to figure out vector potential first
looking at the diagram
s is the distance fro a point P to the wire which is positioned on the Z axis.
r' is the distance to some section of the wire dz

the only contribution is for t > s/c, otherwise the em fields haven't reached the point P

we only need to integrate along the z since there is X and Y symmetry

z = \pm \sqrt{c^2 t^2 - s^2}
but we are going to get the EM fields from time = t - r&#039; / c = t - \frac{\sqrt{z^2 + s^2}}{c}

so we're lookign at integrating this

A = \frac{\mu_{0}}{4 \pi} 2 \int_{0}^{\sqrt{c^2 t^2 - s^2}} \frac{k (t-\frac{\sqrt{z^2 + s^2}}{c}}{\sqrt{z^2 + s^2}} dz

ahve i gone wrong somewhere??

something wrong in my logic?

please help!

thanks for any and all input!
 

Attachments

  • 1.JPG
    1.JPG
    5.3 KB · Views: 450
Physics news on Phys.org
bump :biggrin:
 
stunner5000pt said:
A = \frac{\mu_{0}}{4 \pi} 2 \int_{0}^{\sqrt{c^2 t^2 - s^2}} \frac{k (t-\frac{\sqrt{z^2 + s^2}}{c}}{\sqrt{z^2 + s^2}} dz

That looks correct to me
 
Thread 'Need help understanding this figure on energy levels'
This figure is from "Introduction to Quantum Mechanics" by Griffiths (3rd edition). It is available to download. It is from page 142. I am hoping the usual people on this site will give me a hand understanding what is going on in the figure. After the equation (4.50) it says "It is customary to introduce the principal quantum number, ##n##, which simply orders the allowed energies, starting with 1 for the ground state. (see the figure)" I still don't understand the figure :( Here is...
Thread 'Understanding how to "tack on" the time wiggle factor'
The last problem I posted on QM made it into advanced homework help, that is why I am putting it here. I am sorry for any hassle imposed on the moderators by myself. Part (a) is quite easy. We get $$\sigma_1 = 2\lambda, \mathbf{v}_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \sigma_2 = \lambda, \mathbf{v}_2 = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \end{pmatrix} \sigma_3 = -\lambda, \mathbf{v}_3 = \begin{pmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \end{pmatrix} $$ There are two ways...
Back
Top