yungman
- 5,741
- 294
Homework Statement
I don't know how to come up with this final solution:
1+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{jn(\theta-\phi)}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{-jn(\theta-\phi)}=1+\frac{re^{j(\theta-\phi)}}{a-re^{j(\theta-\phi)}}+\frac{re^{-j(\theta-\phi)}}{a-re^{-j(\theta-\phi)}}=\frac{a^2-r^2}{a^2-2at\cos(\theta-\phi)+r^2}
Homework Equations
The Attempt at a Solution
For \sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{jn(\theta-\phi)}, multiply by \frac{a-re^{j(\theta-\phi)}}{a-re^{j(\theta-\phi)}}
\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{jn(\theta-\phi)}(a-re^{j(\theta-\phi)})
=\frac{ar^n e^{jn(\theta-\phi)}}{a^n}-\frac{r^{n+1}e^{j(n+1)(\theta-\phi)}}{a^n}+\frac{ar^{n-1} e^{j(n-1)(\theta-\phi)}}{a^{n-1}}-\frac{r^{n}e^{j(n(\theta-\phi)}}{a^{n-1}}\cdot \cdot \cdot \cdot\cdot \cdot+\frac{are^{j(\theta-\phi)}}{a}-\frac{r^2e^{j2(\theta-\phi)}}{a}
=re^{j(\theta-\phi)}-\frac{r^{n+1}e^{j(n+1)(\theta-\phi)}}{a^n}
\Rightarrow\;\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{jn(\theta-\phi)}=\frac{re^{j(\theta-\phi)}-\frac{r^{n+1}e^{j(n+1)(\theta-\phi)}}{a^n}}{a-re^{j(\theta-\phi)}}
The same steps are use:
\Rightarrow\;\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{-jn(\theta-\phi)}=\frac{re^{-j(\theta-\phi)}-\frac{r^{n+1}e^{-j(n+1)(\theta-\phi)}}{a^n}}{a-re^{-j(\theta-\phi)}}I expand the series out. You can see most cancel each other and leaving only two terms which factored out into 4 simpler terms. You can see two of the terms match the answer:
1+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{jn(\theta-\phi)}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{-jn(\theta-\phi)}=1+\frac{re^{j(\theta-\phi)}}{a-re^{j(\theta-\phi)}}-\frac{\frac{r^{n+1}e^{j(n+1)(\theta-\phi)}}{a^n}} {a-re^{j(\theta-\phi)}} +\frac{re^{-j(\theta-\phi)}}{a-re^{-j(\theta-\phi)}}-\frac{\frac{r^{n+1}e^{-j(n+1)(\theta-\phi)}}{a^n}} {a-re^{-j(\theta-\phi)}}
Compare with 1+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{jn(\theta-\phi)}+\sum_{n=1}^{\infty}\left(\frac{r}{a}\right)^n e^{-jn(\theta-\phi)}=1+\frac{re^{j(\theta-\phi)}}{a-re^{j(\theta-\phi)}}+\frac{re^{-j(\theta-\phi)}}{a-re^{-j(\theta-\phi)}}
\Rightarrow\;\frac{\frac{r^{n+1}e^{j(n+1)(\theta-\phi)}}{a^n}} {a-re^{j(\theta-\phi)}}+\frac{\frac{r^{n+1}e^{-j(n+1)(\theta-\phi)}}{a^n}} {a-re^{-j(\theta-\phi)}}=0
I have no idea how to make this zero, please help.
Thanks
Last edited: