Solving Simplex Problem with Constraints: 2x+3y=6, 3x+2y=6

  • Thread starter Thread starter u7e
  • Start date Start date
u7e
Messages
1
Reaction score
0

Homework Statement


try to solve following equation using the simplex method
no given objective function

Homework Equations


constraints:
2x+3y = 6
3x+2y = 6

The Attempt at a Solution


i didn't solve it yet but i thought that the objective function can be like this:
0x+0y so
 
Physics news on Phys.org
"try to solve following equation"

What equation?
 
Prove $$\int\limits_0^{\sqrt2/4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx = \frac{\pi^2}{8}.$$ Let $$I = \int\limits_0^{\sqrt 2 / 4}\frac{1}{\sqrt{x-x^2}}\arcsin\sqrt{\frac{(x-1)\left(x-1+x\sqrt{9-16x}\right)}{1-2x}} \, \mathrm dx. \tag{1}$$ The representation integral of ##\arcsin## is $$\arcsin u = \int\limits_{0}^{1} \frac{\mathrm dt}{\sqrt{1-t^2}}, \qquad 0 \leqslant u \leqslant 1.$$ Plugging identity above into ##(1)## with ##u...
Back
Top