geft
- 144
- 0
For r = 3, 0 < theta < pi/2, 0 < phi < pi/3, find the surface area of the sphere. The answer given is 9pi, but I can't seem to work it out. Below is my working:
2\int_{r=0}^{3}\int_{\phi=0}^{\frac{\pi}{3}}r\sin\theta dr d \phi + <br /> 2\int_{r=0}^{3}\int_{\theta=0}^{\frac{\pi}{2}}r dr d \theta + <br /> \int_{\theta=0}^{\frac{\pi}{2}}\int_{\phi=0}^{\frac{\pi}{3}}r^2\sin{\theta} d \theta d \phi
= 2 [\frac{1}{2}R^2]_0^3[sin \frac {\pi}{2}][\phi]_0^{\frac{\pi}{3}}+ <br /> 2 [\frac{1}{2}R^2]_0^3[\theta]_0^{\frac{\pi}{2}} + <br /> R^2 [-\cos{\theta}]_{0}^{\frac{\pi}{2}} [\phi]_{0}^{\frac{\pi}{3}}
= (9)(1)(\frac{\pi}{3})+(9)(\frac{\pi}{2})+(9)(1)(\frac{\pi}{3})
= 3\pi + 4.5\pi + 3\pi = 10.5\pi
2\int_{r=0}^{3}\int_{\phi=0}^{\frac{\pi}{3}}r\sin\theta dr d \phi + <br /> 2\int_{r=0}^{3}\int_{\theta=0}^{\frac{\pi}{2}}r dr d \theta + <br /> \int_{\theta=0}^{\frac{\pi}{2}}\int_{\phi=0}^{\frac{\pi}{3}}r^2\sin{\theta} d \theta d \phi
= 2 [\frac{1}{2}R^2]_0^3[sin \frac {\pi}{2}][\phi]_0^{\frac{\pi}{3}}+ <br /> 2 [\frac{1}{2}R^2]_0^3[\theta]_0^{\frac{\pi}{2}} + <br /> R^2 [-\cos{\theta}]_{0}^{\frac{\pi}{2}} [\phi]_{0}^{\frac{\pi}{3}}
= (9)(1)(\frac{\pi}{3})+(9)(\frac{\pi}{2})+(9)(1)(\frac{\pi}{3})
= 3\pi + 4.5\pi + 3\pi = 10.5\pi